Reproductive Sciences

, Volume 18, Issue 3, pp 219–228 | Cite as

Molecular Regulation of Human Placental Growth Factor (PlGF) Gene Expression in Placental Villi and Trophoblast Cells is Mediated via the Protein Kinase A Pathway

  • Christophe Depoix
  • Meng Kian Tee
  • Robert N. TaylorEmail author
Original Articles


Cyclic 3′,5′-adenosine monophosphate (cAMP) is a critical second messenger for human trophoblasts and regulates the expression of numerous genes. It is known to stimulate in vitro the fusion and differentiation of BeWo choriocarcinoma cells, which acquire characteristics of syncytiotrophoblasts. A DNA microarray analysis of BeWo cells undergoing forskolin-induced syncytialization revealed that among the induced genes, placental growth factor (PlGF) was 10-fold upregulated. We verified this result in two choriocarcinoma cell lines, BeWo and JEG-3, and also in first trimester placental villous explants by quantifying PlGF mRNA (real time PCR) and PlGF protein secreted into the supernatant (ELISA). Similar effects were noted for vascular endothelial growth factor (VEGF) mRNA and protein expression. Treatment with cholera toxin and the use of a specific inhibitor of protein kinase A (PKA) blocked these effects, indicating that the cAMP/PKA pathway is responsible for the cAMP-induced upregulation of PlGF and that one or more G protein coupled receptor(s) was involved. We identified two functional cAMP responsive elements (CRE) in the PlGF promoter and demonstrated that the CRE binding protein, CREB, contributes to the regulation of PlGF gene expression. We speculate that defects in this signaling pathway may lead to abnormal secretion of PlGF protein as observed in the pregnancy-related diseases preeclampsia and intrauterine growth restriction.


cAMP angiogenesis choriocarcinoma 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Depoix CL, Taylor RN Placental Angiogenesis. In: Pijnenborg R, Brosens I, Romero R eds. Placental Bed Vascular Disorders—basic Science and Clinical Management. Cambridge, UK: Cambridge University Press; 2010:52–62.CrossRefGoogle Scholar
  2. 2.
    Chang K, Lubo Z. Review article: steroid hormones and uterine vascular adaptation to pregnancy. Reprod Sci. 2008;15(4):336–348.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Miller VM, Duckles SP. Vascular actions of estrogens: functional implications. Pharmacol Rev. 2008;60(2):210–241.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Qiao X, McConnell KR, Khalil RA. Sex steroids and vascular responses in hypertension and aging. Gend Med. 2008;5(suppl A):S46–S64.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Irani RA, Xia Y. The functional role of the renin-angiotensin system in pregnancy and preeclampsia. Placenta. 2008;29(9):763–771.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Khakoo AY, Sidman RL, Pasqualini R, Arap W. Does the renin-angiotensin system participate in regulation of human vasculogenesis and angiogenesis?. Cancer Res. 2008;68(22):9112–9115.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Wice B, Menton D, Geuze H, Schwartz AL. Modulators of cyclic AMP metabolism induce syncytiotrophoblast formation in vitro. Exp Cell Res. 1990;186(2):306–316.PubMedCrossRefGoogle Scholar
  8. 8.
    Taylor RN, Newman ED, Chen SA. Forskolin and methotrexate induce an intermediate trophoblast phenotype in cultured human choriocarcinoma cells. Am J Obstet Gynecol. 1991;164(1 pt 1):204–210.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Potgens AJ, Drewlo S, Kokozidou M, Kaufmann P. Syncytin: the major regulator of trophoblast fusion? Recent developments and hypotheses on its action. Hum Reprod Update. 2004;10(6):487–496.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Knerr I, Schubert SW, Wich C, et al. Stimulation of GCMa and syncytin via cAMP mediated PKA signaling in human trophoblastic cells under normoxic and hypoxic conditions. FEBS Lett. 2005;579(18):3991–3998.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Yu C, Shen K, Lin M, et al. GCMa regulates the syncytin-mediated trophoblastic fusion. J Biol Chem. 2002;277(51):50062–50068.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Jameson JL, Jaffe RC, Gleason SL, Habener JF. Transcriptional regulation of chorionic gonadotropin alpha- and beta-subunit gene expression by 8-bromo-adenosine 3′,5′-monophosphate. Endocrinology. 1986;119(6):2560–2567.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Mendelson CR, Kamat A. Mechanisms in the regulation of aromatase in developing ovary and placenta. J Steroid Biochem Mol Biol. 2007;106(1–5):62–70.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Hunter A, Aitkenhead M, Caldwell C, McCracken G, Wilson D, McClure N. Serum levels of vascular endothelial growth factor in preeclamptic and normotensive pregnancy. Hypertension. 2000;36(6):965–969.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Taylor RN, Grimwood J, Taylor RS, McMaster MT, Fisher SJ, North RA. Longitudinal serum concentrations of placental growth factor: evidence for abnormal placental angiogenesis in pathologic pregnancies. Am J Obstet Gynecol. 2003;188(1):177–182.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Levine RJ, Maynard SE, Qian C, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004;350(7):672–683.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Levine RJ, Lam C, Qian C, et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med. 2006;355(10):992–1005.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Clark DE, Smith SK, Licence D, Evans AL, Charnock-Jones DS. Comparison of expression patterns for placenta growth factor, vascular endothelial growth factor (VEGF), VEGF-B and VEGF-C in the human placenta throughout gestation. J Endocrinol. 1998;159(3):459–467.PubMedCrossRefGoogle Scholar
  19. 19.
    Kudo Y, Boyd CA, Sargent IL, Redman CW, Lee JM, Freeman TC. An analysis using DNA microarray of the time course of gene expression during syncytialization of a human placental cell line (BeWo). Placenta. 2004;25(6):479–488.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    van den Driesche S, Myers M, Gay E, Thong KJ, Duncan WC. HCG up-regulates hypoxia inducible factor-1 alpha in luteinized granulosa cells: implications for the hormonal regulation of vascular endothelial growth factor A in the human corpus luteum. Mol Hum Reprod. 2008;14(8):455–464.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Popovici RM, Irwin JC, Giaccia AJ, Giudice LC. Hypoxia and cAMP stimulate vascular endothelial growth factor (VEGF) in human endometrial stromal cells: potential relevance to menstruation and endometrial regeneration. J Clin Endocrinol Metab. 1999;84(6):2245–2248.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Radonic A, Thulke S, Mackay IM, Landt O, Siegert W, Nitsche A. Guideline to reference gene selection for quantitative real-time PCR. Biochem Biophys Res Commun. 2004;313(4):856–862.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Lieblich JM, Weintraub BD, Krauth GH, Kohler PO, Rabson AS, Rosen SW. Ectopic and eutopic secretion of chorionic gonadotropin and its subunits in vitro: comparison of clonal strains from carcinomas of lung and placenta. J Natl Cancer Inst. 1976;56(5):911–917.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Hamai Y, Fujii T, Yamashita T, et al. The expression of human leukocyte antigen-G on trophoblasts abolishes the growth-suppressing effect of interleukin-2 towards them. Am J Reprod Immunol. 1999;41(2):153–158.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Waite LL, Person EC, Zhou Y, Lim KH, Scanlan TS, Taylor RN. Placental peroxisome proliferator-activated receptor-gamma is up-regulated by pregnancy serum. J Clin Endocrinol Metab. 2000;85(10):3808–3814.PubMedGoogle Scholar
  26. 26.
    Cartharius K, Frech K, Grote K, et al. MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics. 2005;21(13):2933–2942.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Hagiwara M, Brindle P, Harootunian A, et al. Coupling of hormonal stimulation and transcription via the cyclic AMP-responsive factor CREB is rate limited by nuclear entry of protein kinase A. Mol Cell Biol. 1993;13(8):4852–4859.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Mayall TP, Sheridan PL, Montminy MR, Jones KA. Distinct roles for P-CREB and LEF-1 in TCR alpha enhancer assembly and activation on chromatin templates in vitro. Genes Dev. 1997;11(7):887–899.PubMedCrossRefGoogle Scholar
  29. 29.
    Chang M, Mukherjea D, Gobble RM, Groesch KA, Torry RJ, Torry DS. Glial cell missing 1 regulates placental growth factor (PGF) gene transcription in human trophoblast. Biol Reprod. 2008;78(5):841–851.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Cramer M, Nagy I, Murphy BJ, et al. NF-kappaB contributes to transcription of placenta growth factor and interacts with metal responsive transcription factor-1 in hypoxic human cells. Biol Chem. 2005;386(9):865–872.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Hosoya T, Takizawa K, Nitta K, Hotta Y. Glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell. 1995;82(6):1025–1036.PubMedCrossRefGoogle Scholar
  32. 32.
    Jones BW, Fetter RD, Tear G, Goodman CS. Glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell. 1995;82(6):1013–1023.PubMedCrossRefGoogle Scholar
  33. 33.
    Alfonso TB, Jones BW. Gcm2 promotes glial cell differentiation and is required with glial cells missing for macrophage development in Drosophila. Dev Biol. 2002;248(2):369–383.PubMedCrossRefGoogle Scholar
  34. 34.
    Schreiber J, Riethmacher-Sonnenberg E, Riethmacher D, et al. Placental failure in mice lacking the mammalian homolog of glial cells missing, GCMa. Mol Cell Biol. 2000;20(7):2466–2474.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Chang CW, Chuang HC, Yu C, Yao TP, Chen H. Stimulation of GCMa transcriptional activity by cyclic AMP/protein kinase A signaling is attributed to CBP-mediated acetylation of GCMa. Mol Cell Biol. 2005;25(19):8401–8414.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Iimuro S, Shindo T, Moriyama N, et al. Angiogenic effects of adrenomedullin in ischemia and tumor growth. Circ Res. 2004;95(4):415–423.PubMedCrossRefGoogle Scholar
  37. 37.
    Ichikawa-Shindo Y, Sakurai T, Kamiyoshi A, et al. The GPCR modulator protein RAMP2 is essential for angiogenesis and vascular integrity. J Clin Invest. 2008;118(1):29–39.PubMedCrossRefGoogle Scholar
  38. 38.
    Makino Y, Shibata K, Makino I, Ono Y, Kangawa K, Kawarabayashi T. Expression of adrenomedullin in feto-placental circulation of human normotensive pregnant women and pregnancy-induced hypertensive women. Endocrinology. 1999;140(11):5439–5442.PubMedCrossRefGoogle Scholar
  39. 39.
    Knerr I, Dachert C, Beinder E, et al. Adrenomedullin, calcitonin gene-related peptide and their receptors: evidence for a decreased placental mRNA content in preeclampsia and HELLP syndrome. Eur J Obstet Gynecol Reprod Biol. 2002;101(1):47–53.PubMedCrossRefGoogle Scholar
  40. 40.
    Dong YL, Green KE, Vegiragu S, et al. Evidence for decreased calcitonin gene-related peptide (CGRP) receptors and compromised responsiveness to CGRP of fetoplacental vessels in preeclamptic pregnancies. J Clin Endocrinol Metab. 2005;90(4):2336–2343.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Dong YL, Chauhan M, Green KE, et al. Circulating calcitonin gene-related peptide and its placental origins in normotensive and preeclamptic pregnancies. Am J Obstet Gynecol. 2006;195(6):1657–1667.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Di Iorio R, Marinoni E, Letizia C, Alo P, Villaccio B, Cosmi EV. Adrenomedullin, a new vasoactive peptide, is increased in preeclampsia. Hypertension. 1998;32(4):758–763.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Gratton RJ, Gluszynski M, Mazzuca DM, Nygard K, Han VK. Adrenomedullin messenger ribonucleic acid expression in the placentae of normal and preeclamptic pregnancies. J Clin Endocrinol Metab. 2003;88(12):6048–6055.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Di Iorio R, Marinoni E, Letizia C, Gazzolo D, Lucchini C, Cosmi EV. Adrenomedullin is increased in the fetoplacental circulation in intrauterine growth restriction with abnormal umbilical artery waveforms. Am J Obstet Gynecol. 2000;182(3):650–654.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Society for Reproductive Investigation 2011

Authors and Affiliations

  • Christophe Depoix
    • 1
  • Meng Kian Tee
    • 2
  • Robert N. Taylor
    • 3
    Email author
  1. 1.Laboratoire d’obstétriqueUniversité Catholique de Louvain-BruxellesBruxellesBelgium
  2. 2.PediatricsUniversity of CaliforniaSan FranciscoUSA
  3. 3.Gynecology and Obstetrics Emory University School of MedicineAtlantaUSA

Personalised recommendations