Advertisement

Reproductive Sciences

, Volume 18, Issue 4, pp 398–405 | Cite as

Moderate Global Reduction in Maternal Nutrition Has Differential Stage of Gestation Specific Effects on β1- and β2-Adrenergic Receptors in the Fetal Baboon Liver

  • Amrita KamatEmail author
  • Mark J. Nijland
  • Thomas J. McDonald
  • Laura A. Cox
  • Peter W. Nathanielsz
  • Cun Li
Original Articles

Abstract

Hepatic β-adrenergic receptors (β-ARs) play a pivotal role in mobilization of reserves via gluconeogenesis and glycogenolysis to supply the animal with its energy needs during decreased nutrient availability. Using a unique nutrient-deprived baboon model, we have demonstrated for the first time that immunoreactive hepatic β1- and β2-AR subtypes are regionally distributed and localized on cells around the central lobular vein in 0.5 and 0.9 gestation (G) fetuses of ad libitum fed control (CTR) and maternal nutrient restricted (MNR) mothers. Furthermore, MNR decreased fetal liver immunoreactive β1-AR and increased immunoreactive β2-AR at 0.5G. However, at 0.9G, immunohistochemistry and Western blot analysis revealed a decrease in β1-AR and no change in β2-AR levels. Thus, MNR in a nonhuman primate species has effects on hepatic β1- and β2-ARs that are receptor- and gestation stage-specific and may represent compensatory systems whose effects would increase glucose availability in the presence of nutrient deprivation.

Keywords

β-adrenergic receptor immunolocalization gene expression protein expression baboon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armitage JA, Khan IY, Taylor PD, Nathanielsz PW, Poston L. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals?. J Physiol (Lond). 2004;561 (pt 2): 355–377.CrossRefGoogle Scholar
  2. 2.
    Li C, Schlabritz-Loutsevitch NE, Hubbard GB, et al. Effects of maternal global nutrient restriction on fetal baboon hepatic IGF system genes and gene products. Endocrinology. 2009;150 (10): 4634–4642.CrossRefGoogle Scholar
  3. 3.
    Nijland MJ, Mitsuya K, Li C, et al. Epigenetic modification of fetal baboon hepatic phosphoenolpyruvate carboxykinase following exposure to moderately reduced nutrient availability. J Physiol. 2010;588 (pt 8): 1349–1359.CrossRefGoogle Scholar
  4. 4.
    Thai L, Galluzzo JM, McCook EC, Seidler FJ, Slotkin TA. Atypical regulation of hepatic adenylyl cyclase and adrenergic receptors during a critical developmental period: agonists evoke supersensitivity accompanied by failure of receptor down-regulation. Pediatr Res. 1996;39 (4 pt 1): 697–707.CrossRefGoogle Scholar
  5. 5.
    Carron J, Morel C, Hammon HM, Blum JW. Ontogenetic development of mRNA levels and binding sites of hepatic [beta]-adrenergic receptors in cattle. Domest Anim Endocrinol. 2005;28 (3): 320–330.CrossRefGoogle Scholar
  6. 6.
    Rizza RA, Cryer PE, Haymond MW, Gerich JE. Adrenergic mechanisms of catecholamine action on glucose homeostasis in man. Metabolism. 1980;29 (11 suppl 1): 1155–1163.CrossRefGoogle Scholar
  7. 7.
    Rosenbaum DM, Rasmussen SGF, Kobilka BK. The structure and function of G-protein-coupled receptors. Nature. 2009;459:356–363.CrossRefGoogle Scholar
  8. 8.
    Schmelck PH, Hanoune J. The hepatic adrenergic receptors. Mol Cell Biochem. 1980;33 (1–2): 35–48.PubMedGoogle Scholar
  9. 9.
    Xiao RP, Zhu W, Zheng M, et al. Subtype-specific [alpha]1- and [beta]-adrenoceptor signaling in the heart. Trends Pharmacol Sci. 2006;27 (6): 330–337.CrossRefGoogle Scholar
  10. 10.
    Large V, Hellström L, Reynisdottir S, et al. Human beta-2 adrenoceptor gene polymorphisms are highly frequent in obesity and associate with altered adipocyte beta-2 adrenoceptor function. J Clin Invest. 1997;100 (12): 3005–3013.CrossRefGoogle Scholar
  11. 11.
    Nijland MJ, Schlabritz-Loutsevitch N, Hubbard GB, Nathanielsz PW, Cox LA. Nonhuman primate fetal kidney transcriptome analysis indicates mTOR is a central nutrient responsive pathway. J Physiol. 2007;579 (pt 3): 643–656.CrossRefGoogle Scholar
  12. 12.
    Li C, Levitz M, Hubbard GB, et al. The IGF axis in baboon pregnancy: placental and systemic responses to feeding 70% global ad libitum diet. Placenta. 2007;28 (11–12): 1200–1210.CrossRefGoogle Scholar
  13. 13.
    Rozance PJ, Limesand SW, Barry JS, et al. Chronic late gestation hypoglycemia up-regulates hepatic PEPCK associated with increased PGC1{alpha} mRNA and pCREB in fetal sheep. Am J Physiol Endocrinol Metab. 2008;294:E365–E370.CrossRefGoogle Scholar
  14. 14.
    Schlabritz-Loutsevitch NE, Howell K, Rice K, et al. Development of a system for individual feeding of baboons maintained in an outdoor group social environment. J Med Primatol. 2004;33 (3): 117–126.CrossRefGoogle Scholar
  15. 15.
    Schlabritz-Loutsevitch NE, Hubbard GB, Dammann MJ, et al. Normal concentrations of essential and toxic elements in pregnant baboons and fetuses (Papio species). J Med Primatol. 2004;33 (3): 152–162.CrossRefGoogle Scholar
  16. 16.
    Hendrickx AG Embryology of the Baboon. Chicago, IL: The University of Chicago Press; 1971:18–20.Google Scholar
  17. 17.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression using real-time quantitative PCR and the 2-(Delta Delta C(T)) Method. Methods. 2001;25 (4): 402–408.CrossRefGoogle Scholar
  18. 18.
    Smith PK, Krohn RI, Hermanson GT, et al. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985;150 (1): 76–85.CrossRefGoogle Scholar
  19. 19.
    Martin NP, Whalen EJ, Zamah MA, Pierce KL, Lefkowitz RJ. PKA-mediated phosphorylation of the beta 1-adrenergic receptor promotes Gs/Gi switching. Cell Signal. 2004;16 (12): 1397–1403.CrossRefGoogle Scholar
  20. 20.
    Cagliani R, Fumagalli M, Pozzoli U, et al. Diverse evolutionary histories for β-adrenoreceptor genes in humans. Am J Hum Genet. 2009;85 (1): 64–75.CrossRefGoogle Scholar
  21. 21.
    Rohrer DK, Chruscinski AJ, Schauble EH, Bernstein D, Kobilka BK. Cardiovascular and metabolic alterations in mice lacking both β1- and β2-adrenergic receptors. J Biol Chem. 1999;274 (24): 16701–16708.CrossRefGoogle Scholar
  22. 22.
    Liggins GC. The role of cortisol in preparing the fetus for birth. Reprod Fertil Dev. 1994;6 (2): 141–150.CrossRefGoogle Scholar
  23. 23.
    Ream MA, Chandra R, Peavey M, et al. High oxygen prevents fetal lethality due to lack of catecholamines. Am J Physiol Regul Integr Comp Physiol. 2008;295 (3): R942–R953.CrossRefGoogle Scholar
  24. 24.
    Miller RD, Degasparo M. The autonomic nervous system and perinatal metabolism. Ciba Found Symp. 1981;83:291–309.Google Scholar
  25. 25.
    Chandra R, Portbury AL, Ray A, Ream M, Groelle M, Chikaraishi DM. Beta1-adrenergic receptors maintain fetal heart rate and survival. Biol Neonate. 2006;89 (3): 147–158.CrossRefGoogle Scholar
  26. 26.
    Slotkin TA, Lau C, Seidler FJ. Beta-adrenergic receptor overexpression in the fetal rat: distribution, receptor subtypes, and coupling to adenylate cyclase activity via G-proteins. Toxicol Appl Pharmacol. 1994;129 (2): 223–234.CrossRefGoogle Scholar
  27. 27.
    Krief S, Lönnqvist F, Raimbault S, et al. Tissue distribution of β3-adrenergic receptor mRNA in man. J Clin Invest. 1993;91 (1): 344–349.CrossRefGoogle Scholar
  28. 28.
    Andersson SM. Beta-adrenergic induction of tyrosine aminotransferase in organ culture of fetal rat and fetal human liver. Endocrinology. 1983;112 (2): 466–469.CrossRefGoogle Scholar
  29. 29.
    Pauerstein CJ, Eddy CA, Croxatto HD, Hess R, Siler-Khodr TM, Croxatto HB. Temporal relationships of estrogen, progesterone, and luteinizing hormone levels to ovulation in women and infrahuman primates. Am J Obstet Gynecol. 1978;130 (8): 876–886.CrossRefGoogle Scholar
  30. 30.
    Yamamoto Y, Manyon AT, Osawa Y, Kirdani RY, Sandberg AA. Androgen metabolism in the baboon: a comparison with the human. J Steroid Biochem. 1978;9 (8): 751–759.CrossRefGoogle Scholar
  31. 31.
    Cardani R, Zavanella T. Immunohistochemical localization of β1-adrenergic receptors in the liver of male and female F344 rat. Histochem Cell Biol. 2001;116 (5): 441–445.CrossRefGoogle Scholar
  32. 32.
    Erraji-Benchekroun L, Couton D, Postic C, et al. Overexpression of ta2-adrenergic receptors in mouse liver alters the expression of gluconeogenic and glycolytic enzymes. Am J Physiol Endocrinol Metab. 2005;288 (4): E715–E722.CrossRefGoogle Scholar
  33. 33.
    Asensio C, Jimenez M, Kühne F, Rohner-Jeanrenaud F, Muzzin P. The lack of beta-adrenoceptors results in enhanced insulin sensitivity in mice exhibiting increased adiposity and glucose intolerance. Diabetes. 2005;54 (12): 3490–3495.CrossRefGoogle Scholar
  34. 34.
    Hadcock JR, Wang HY, Malbon CC. Agonist-induced destabilization of beta-adrenergic receptor mRNA. Attenuation of glucocorticoid-induced up-regulation of beta-adrenergic receptors. J Biol Chem. 1989;264 (33): 19928–19933.PubMedGoogle Scholar
  35. 35.
    Jazayeri A, Meyer WJ. Glucocorticoid modulation of beta-adrenergic receptors of cultured rat arterial smooth muscle cells. Hypertension. 1988;12 (4): 393–398.CrossRefGoogle Scholar
  36. 36.
    Kiely J, Hadcock JR, Bahouth SW, Malbon CC. Glucocorticoids down-regulate beta 1-adrenergic-receptor expression by suppressing transcription of the receptor gene. Biochem J. 1994;302 (pt 2): 397–403.CrossRefGoogle Scholar
  37. 37.
    Bahouth SW, Park EA, Beauchamp M, Cui X, Malbon CC. Identification of a glucocorticoid repressor domain in the rat beta 1-adrenergic receptor gene. Recept Signal Transduct. 1996;6 (3–4): 141–149.PubMedGoogle Scholar
  38. 38.
    Cornett LE, Hiller FC, Jacobi SE, Cao W, McGraw DW. Identification of a glucocorticoid response element in the rat beta 2-adrenergic receptor gene. Mol Pharmacol. 1998;54 (6): 1016–1023.CrossRefGoogle Scholar
  39. 39.
    Katz MS, Dax EM, Gregerman RI. Beta adrenergic regulation of rat liver glycogenolysis during aging. Exp Gerontol. 1993;28 (4–5): 329–340.CrossRefGoogle Scholar
  40. 40.
    Katz MS, McNair CL, Hymer TK, Boland SR. Emergence of beta adrenergic-responsive hepatic glycogenolysis in male rats during post-maturational aging. Biochem Biophys Res Commun. 1987;147 (2): 724–730.CrossRefGoogle Scholar

Copyright information

© Society for Reproductive Investigation 2011

Authors and Affiliations

  • Amrita Kamat
    • 1
    • 2
    Email author
  • Mark J. Nijland
    • 3
    • 5
  • Thomas J. McDonald
    • 3
    • 4
  • Laura A. Cox
    • 4
    • 5
  • Peter W. Nathanielsz
    • 3
    • 4
  • Cun Li
    • 3
    • 4
  1. 1.Department of MedicineUniversity of Texas Health Science Center at San AntonioSan AntonioUSA
  2. 2.Geriatric Research, Education and Clinical Center, Audie L. Murphy DivisionSouth Texas Veterans Health Care SystemSan AntonioUSA
  3. 3.Center for Pregnancy and Newborn ResearchUniversity of Texas Health Science CenterSan AntonioUSA
  4. 4.Department of GeneticsSouthwest Foundation for Biomedical ResearchSan AntonioUSA
  5. 5.Southwest National Primate Research CenterSouthwest Foundation for Biomedical ResearchSan AntonioUSA

Personalised recommendations