Reproductive Sciences

, Volume 18, Issue 4, pp 383–390 | Cite as

Expression of the Vasoactive Proteins AT1, AT2, and ANP by Pregnancy-Induced Mouse Uterine Natural Killer Cells

  • Kota HattaEmail author
  • Alexandra L. Carter
  • Zhilin Chen
  • Ester Leno-Durán
  • Carmen Ruiz-Ruiz
  • Enrique G. Olivares
  • M. Yat Tse
  • Stephen C. Pang
  • B. Anne Croy
Original Articles


Angiotensin II receptor type 1 (AT1) activation leads to vasoconstriction and type 2 receptor (AT2) leads to vasodilation. Atrial natriuretic peptide (ANP) antagonizes the effects of AT1. In human and murine pregnancies, uterine natural killer (uNK) cells closely associate with decidual blood vessels. Protein localization of AT1, AT2, and ANP to mouse uNK cells was examined between gestation days (gds) 6 and 12, the interval of uNK cell expansion. Percentages of uNK cells expressing AT1 or AT2 changed between gd6 and gd10. Atrial natriuretic peptide did not localize to uNK cells at gd6 or 8, but did colocalize to uNK cells at gd10 and 12, times immediately after spiral arterial modification. This is the first report of AT1, AT2, and ANP expression in uterine immune cells. Expression of these molecules suggests that uNK cells have the potential to contribute to the changes in blood pressure that occur between days 5 and 12 of pregnancy in mice.


angiotensin II receptors atrial natriuretic peptide mice pregnancy uterine natural killer cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paul M, Poyan MA, Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev. 2006;86 (3): 747–803.PubMedCrossRefGoogle Scholar
  2. 2.
    Miyazaki M, Takai S. Tissue angiotensin II generating system by angiotensin-converting enzyme and chymase. J Pharmacol Sci. 2006;100 (5): 391–397.PubMedCrossRefGoogle Scholar
  3. 3.
    Bernstein KE, Xiao HD, Frenzel K, et al. Six truisms concerning ACE and the renin-angiotensin system educed from the genetic analysis of mice. Circ Res. 2005;96 (11): 1135–1144.PubMedCrossRefGoogle Scholar
  4. 4.
    Bernstein KE, Xiao HD, Adams JW, et al. Establishing the role of angiotensin-converting enzyme in renal function and blood pressure control through the analysis of genetically modified mice. J Am Soc Nephrol. 2005;16 (3): 583–591.PubMedCrossRefGoogle Scholar
  5. 5.
    van Zwieten PA. The role of angiotensin II receptors and their antagonists in hypertension. Ann Ital Med Int. 2000;15 (1): 85–91.PubMedGoogle Scholar
  6. 6.
    Hunyady L, Catt KJ. Pleiotropic AT1 receptor signaling pathways mediating physiological and pathogenic actions of angiotensin II. Mol Endocrinol. 2006;20 (5): 953–970.PubMedCrossRefGoogle Scholar
  7. 7.
    Goodfriend TL. Angiotensin receptors: history and mysteries. Am J Hypertens. 2000;13 (4 pt 1): 442–449.PubMedCrossRefGoogle Scholar
  8. 8.
    Johren O, Dendorfer A, Dominiak P. Cardiovascular and renal function of angiotensin II type-2 receptors. Cardiovasc Res. 2004;62 (3): 460–467.PubMedCrossRefGoogle Scholar
  9. 9.
    Atlas SA, Kleinert HD, Camargo MJ, et al. Atrial natriuretic factor (auriculin): structure and biological effects. J Clin Hypertens. 1985;1 (2): 187–198.PubMedGoogle Scholar
  10. 10.
    Trippodo NC. An update on the physiology of atrial natriuretic factor. Hypertension. 1987;10 (5 pt 2): I122–I127.PubMedGoogle Scholar
  11. 11.
    Sumners C, Tang W, Paulding W, Raizada MK. Peptide receptors in astroglia: focus on angiotensin II and atrial natriuretic peptide. Glia. 1994;11 (2): 110–116.PubMedCrossRefGoogle Scholar
  12. 12.
    Dietz JR. Mechanisms of atrial natriuretic peptide secretion from the atrium. Cardiovasc Res. 2005;68 (1): 8–17.PubMedCrossRefGoogle Scholar
  13. 13.
    Melo LG, Steinhelper ME, Pang SC, Tse Y, Ackermann U. ANP in regulation of arterial pressure and fluid-electrolyte balance: lessons from genetic mouse models. Physiol Genomics. 2000;3 (1): 45–58.PubMedCrossRefGoogle Scholar
  14. 14.
    Carey RM. Update on the role of the AT2 receptor. Curr Opin Nephrol Hypertens. 2005;14 (1): 67–71.PubMedCrossRefGoogle Scholar
  15. 15.
    Imaizumi T, Takeshita A. Influence of ANP on sympathetic nerve activity and chronotropic regulation of the heart. J Cardiovasc Electrophysiol. 1993;4 (6): 719–729.PubMedCrossRefGoogle Scholar
  16. 16.
    von Bohlen und HO, Albrecht D. The CNS renin-angiotensin system. Cell Tissue Res. 2006;326 (2): 599–616.CrossRefGoogle Scholar
  17. 17.
    Saavedra JM. Brain angiotensin II: new developments, unanswered questions and therapeutic opportunities. Cell Mol Neurobiol. 2005;25 (3–4): 485–512.PubMedCrossRefGoogle Scholar
  18. 18.
    Guzik TJ, Hoch NE, Brown KA, et al. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med. 2007;204 (10): 2449–2460.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Jurewicz M, McDermott DH, Sechler JM, et al. Human T and natural killer cells possess a functional renin-angiotensin system: further mechanisms of angiotensin II-induced inflammation. J Am Soc Nephrol. 2007;18 (4): 1093–1102.PubMedCrossRefGoogle Scholar
  20. 20.
    Harrison DG, Guzik TJ, Goronzy J, Weyand C. Is hypertension an immunologic disease?. Curr Cardiol Rep. 2008;10 (6): 464–469.PubMedCrossRefGoogle Scholar
  21. 21.
    Hoch NE, Guzik TJ, Chen W, et al. Regulation of T-cell function by endogenously produced angiotensin II. Am J Physiol Regul Integr Comp Physiol. 2009;296 (2): R208–R216.PubMedCrossRefGoogle Scholar
  22. 22.
    Vollmar AM, Wolf R, Schulz R. Co-expression of the natriuretic peptides (ANP, BNP, CNP) and their receptors in normal and acutely involuted rat thymus. J Neuroimmunol. 1995;57 (1–2): 117–127.PubMedCrossRefGoogle Scholar
  23. 23.
    Hanna J, Goldman-Wohl D, Hamani Y, et al. Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med. 2006;12 (9): 1065–1074.PubMedCrossRefGoogle Scholar
  24. 24.
    Moffett-King A. Natural killer cells and pregnancy. Nat Rev Immunol. 2002;2:656–663.PubMedCrossRefGoogle Scholar
  25. 25.
    Croy BA, van den Heuvel MJ, Borzychowski AM, Tayade C. Uterine natural killer cells: a specialized differentiation regulated by ovarian hormones. Immunol Rev. 2006;214:161–185.PubMedCrossRefGoogle Scholar
  26. 26.
    Greenwood JD, Minhas K, di Santo JP, Makita M, Kiso Y, Croy BA. Ultrastructural studies of implantation sites from mice deficient in uterine natural killer cells. Placenta. 2000;21 (7): 693–702.PubMedCrossRefGoogle Scholar
  27. 27.
    Tayade C, Hilchie D, He H, et al. Genetic deletion of placenta growth factor in mice alters uterine NK cells. J Immunol. 2007;178 (7): 4267–4275.PubMedCrossRefGoogle Scholar
  28. 28.
    Tayade C, Fang Y, Croy BA. A review of gene expression in porcine endometrial lymphocytes, endothelium and trophoblast during pregnancy success and failure. J Reprod Dev. 2007;53 (3): 455–463.PubMedCrossRefGoogle Scholar
  29. 29.
    Ashkar AA, di Santo JP, Croy BA. Interferon gamma contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy. J Exp Med. 2000;192 (2): 259–270.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Zhang J, Dong H, Wang B, Zhu S, Croy BA. Dynamic changes occur in patterns of endometrial EFNB2/EPHB4 expression during the period of spiral arterial modification in mice. Biol Reprod. 2008;79 (3): 450–458.PubMedCrossRefGoogle Scholar
  31. 31.
    Smith SD, Dunk CE, Aplin JD, Harris LK, Jones RL. Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy. Am J Pathol. 2009;174 (5): 1959–1971.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Murphy SP, Tayade C, Ashkar AA, Hatta K, Zhang J, Croy BA. Interferon gamma in successful pregnancies. Biol Reprod. 2009;80 (5): 848–859.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Pijnenborg R, Vercruysse L, Hanssens M. The uterine spiral arteries in human pregnancy: facts and controversies. Placenta. 2006;27 (9–10): 939–958.PubMedCrossRefGoogle Scholar
  34. 34.
    Paffaro VA, Bizinotto MC, Joazeiro PP, Yamada AT. Subset classification of mouse uterine natural killer cells by DBA lectin reactivity. Placenta. 2003;24 (5): 479–488.PubMedCrossRefGoogle Scholar
  35. 35.
    Delgado SR, McBey BA, Yamashiro S, Fujita J, Kiso Y, Croy BA. Accounting for the peripartum loss of granulated metrial gland cells, a natural killer cell population, from the pregnant mouse uterus. J Leukoc Biol. 1996;59 (2): 262–269.PubMedCrossRefGoogle Scholar
  36. 36.
    Bianco J, Stephenson K, Yamada AT, Croy BA. Time-course analyses addressing the acquisition of DBA lectin reactivity in mouse lymphoid organs and uterus during the first week of pregnancy. Placenta. 2008;29 (12): 1009–1015.PubMedCrossRefGoogle Scholar
  37. 37.
    Chan JCY, Knudson O, Wu F, Morser J, Dole WP, Wu Q. Hypertension in mice lacking the proatrial natriuretic peptide convertase corin. Proc Natl Acad Sci U S A. 2005;102 (3): 785–790.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Caron K, Hagaman J, Nishikimi T, Kim HS, Smithies O. Adrenomedullin gene expression differences in mice do not affect blood pressure but modulate hypertension-induced pathology in males. Proc Natl Acad Sci. U S A. 2007;104 (9): 3420–3425.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Chan JC, Knudson O, Wu F, Morser J, Dole WP, Wu Q. Hypertension in mice lacking the proatrial natriuretic peptide convertase corin. Proc Natl Acad Sci U S A. 2005;102 (3): 785–790.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Burke SD, Barrette VF, Bianco J, et al. Spiral arterial remodeling is not essential for normal blood pressure regulation in pregnant mice. Hypertension. 2010;55 (3): 729–737.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Takeda-Matsubara Y, Iwai M, Cui TX, et al. Roles of angiotensin type 1 and 2 receptors in pregnancy-associated blood pressure change. Am J Hypertens. 2004;17 (8): 684–689.PubMedCrossRefGoogle Scholar
  42. 42.
    Lehtonen JY, Horiuchi M, Daviet L, Akishita M, Dzau VJ. Activation of the de novo biosynthesis of sphingolipids mediates angiotensin II type 2 receptor-induced apoptosis. J Biol Chem. 1999;274 (24): 16901–16906.PubMedCrossRefGoogle Scholar
  43. 43.
    Lehtonen JY, Daviet L, Nahmias C, Horiuchi M, Dzau VJ. Analysis of functional domains of angiotensin II type 2 receptor involved in apoptosis. Mol Endocrinol. 1999;13 (7): 1051–1060.PubMedCrossRefGoogle Scholar
  44. 44.
    Dechend R, Homuth V, Wallukat G, et al. Agonistic antibodies directed at the angiotensin II, AT1 receptor in preeclampsia. J Soc Gynecol Investig. 2006;13 (2): 79–86.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhou CC, Zhang Y, Irani RA, et al. Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nat Med. 2008;14 (8): 855–862.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Ascon M, Ascon DB, Liu M, et al. Renal ischemia-reperfusion leads to long term infiltration of activated and effector-memory T lymphocytes. Kidney Int. 2009;75 (5): 526–535.PubMedCrossRefGoogle Scholar

Copyright information

© Society for Reproductive Investigation 2011

Authors and Affiliations

  • Kota Hatta
    • 1
    • 2
    Email author
  • Alexandra L. Carter
    • 3
  • Zhilin Chen
    • 3
  • Ester Leno-Durán
    • 3
    • 4
  • Carmen Ruiz-Ruiz
    • 4
  • Enrique G. Olivares
    • 4
    • 5
  • M. Yat Tse
    • 3
  • Stephen C. Pang
    • 3
  • B. Anne Croy
    • 3
  1. 1.Division of Cardiovascular Surgery and Department of SurgeryToronto General Research Institute and University of TorontoTorontoCanada
  2. 2.Departments of Microbiology and ImmunologyQueen’s UniversityKingstonCanada
  3. 3.Anatomy and Cell BiologyQueen’s UniversityKingstonCanada
  4. 4.Unidad de Inmunología, IBIMERUniversidad de Granada, Centro de Investigación BiomédicaGranadaSpain
  5. 5.Departamento de Bioquímica y Biología Molecular III e InmunologíaUniversidad de Granada, Centro de Investigación BiomédicaGranadaSpain

Personalised recommendations