Advertisement

Reproductive Sciences

, Volume 18, Issue 4, pp 374–382 | Cite as

Enhanced Angiogenic Capacity of Human Umbilical Vein Endothelial Cells From Women With Preeclampsia

  • Amie J. MoyesEmail author
  • David Maldonado-Pérez
  • Gillian A. Gray
  • Fiona C. Denison
Original Articles

Abstract

Maternal and placental angiogenic abnormalities are a common feature of preeclampsia. The aim of this study was to determine if endothelial cells from women with preeclampsia exhibit different angiogenic responses compared to healthy cells. Using the endothelial tube formation assay, we have shown that primary human umbilical vein endothelial cells (HUVECs) isolated from women with preeclampsia display greater levels of in vitro angiogenic branching compared to cells from healthy women. A comparable increase in tube formation was observed in healthy cells cultured at 0.5% O2. Vascular endothelial growth factor (VEGF) receptor inhibition resulted in a decrease in angiogenesis in both healthy hypoxic cells and cells from women with preeclampsia. These findings demonstrate that HUVECs from women with preeclampsia exhibit inherent differences in their angiogenic capacity which are apparent in the absence of placental or maternal factors.

Keywords

angiogenesis preeclampsia endothelium VEGF hypoxia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zygmunt M, Herr F, Munstedt K, Lang U, Liang OD. Angiogenesis and vasculogenesis in pregnancy. Eur J Obstet Gynecol Reprod Biol. 2003;110 (suppl 1): S10–S18.CrossRefGoogle Scholar
  2. 2.
    Mayhew TM, Charnock-Jones DS, Kaufmann P. Aspects of human fetoplacental vasculogenesis and angiogenesis. III. Changes in complicated pregnancies. Placenta. 2002;25 (2–3): 127–139.Google Scholar
  3. 3.
    Levine RJ, Lam C, Qian C, et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med. 2006;355 (10): 992–1005.CrossRefGoogle Scholar
  4. 4.
    Romero R, Nien JK, Espinoza J, et al. A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial growth factor receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate. J Matern Fetal Neonatal Med. 2008;21 (1): 9–23.CrossRefGoogle Scholar
  5. 5.
    Kingdom JC, Kaufmann P. Oxygen and placental vascular development. Adv Exp Med Biol. 1999;474:259–275.CrossRefGoogle Scholar
  6. 6.
    Kingdom JC. Kaufmann P. Oxygen and placental villous development: origins of fetal hypoxia. Placenta. 1997;18 (8): 613–621.CrossRefGoogle Scholar
  7. 7.
    Kumazaki K, Nakayama M, Suehara N, Wada Y. Expression of vascular endothelial growth factor, placental growth factor, and their receptors Flt-1 and KDR in human placenta under pathologic conditions. Hum Pathol. 2002;33 (11): 1069–1077.CrossRefGoogle Scholar
  8. 8.
    Trollmann R, Amann K, Schoof E, et al. Hypoxia activates the human placental vascular endothelial growth factor system in vitro and in vivo: up-regulation of vascular endothelial growth factor in clinically relevant hypoxic ischemia in birth asphyxia. Am J Obstet Gynecol. 2003;188 (2): 517–523.CrossRefGoogle Scholar
  9. 9.
    Torry DS, Mukherjea D, Arroyo J, Torry RJ. Expression and function of placenta growth factor: implications for abnormal placentation. J Soc Gynecol Investig. 2003;10 (4): 178–188.CrossRefGoogle Scholar
  10. 10.
    Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111 (5): 649–658.CrossRefGoogle Scholar
  11. 11.
    Ahmad S, Ahmed A. Elevated placental soluble vascular endothelial growth factor receptor-1 inhibits angiogenesis in preeclampsia. Circ Res. 2004;95 (9): 884–891.CrossRefGoogle Scholar
  12. 12.
    Baker PN, Krasnow J, Roberts JM, Yeo KT. Elevated serum levels of vascular endothelial growth factor in patients with preeclampsia. Obstet Gynecol. 1995;86 (5): 815–821.CrossRefGoogle Scholar
  13. 13.
    Hayman R, Brockelsby J, Kenny L, Baker P. Preeclampsia: the endothelium, circulating factor(s) and vascular endothelial growth factor. J Soc Gynecol Investig. 1999;6 (1): 3–10.CrossRefGoogle Scholar
  14. 14.
    Galazios G, Papazoglou D, Giagloglou K, Vassaras G, Koutlaki N, Maltezos E. Umbilical cord serum vascular endothelial growth factor (VEGF) levels in normal pregnancies and in pregnancies complicated by preterm delivery or pre-eclampsia. Int J Gynaecol Obstet. 2004;85 (1): 6–11.CrossRefGoogle Scholar
  15. 15.
    Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9 (6): 677–684.CrossRefGoogle Scholar
  16. 16.
    Fisher SJ. The placental problem: linking abnormal cytotrophoblast differentiation to the maternal symptoms of preeclampsia. Reprod Biol Endocrinol. 2004;2:53.CrossRefGoogle Scholar
  17. 17.
    Munaut C, Lorquet S, Pequeux C, et al. Hypoxia is responsible for soluble vascular endothelial growth factor receptor-1 (VEGFR-1) but not for soluble endoglin induction in villous trophoblast. Hum Reprod. 2008;23 (6): 1407–1415.CrossRefGoogle Scholar
  18. 18.
    Padavala S, Pope N, Baker P, Crocker I. An imbalance between vascular endothelial growth factor and its soluble receptor in placental villous explants of intrauterine growth-restricted pregnancies. J Soc Gynecol Investig. 2006;13 (1): 40–47.CrossRefGoogle Scholar
  19. 19.
    Robinson NJ, Wareing M, Hudson NK, et al. Oxygen and the liberation of placental factors responsible for vascular compromise. Lab Invest. 2008;88 (3): 293–305.CrossRefGoogle Scholar
  20. 20.
    Wang Y, Gu Y, Granger DN, Roberts JM, Alexander JS. Endothelial junctional protein redistribution and increased monolayer permeability in human umbilical vein endothelial cells isolated during preeclampsia. Am J Obstet Gynecol. 2002;186 (2): 214–220.CrossRefGoogle Scholar
  21. 21.
    Dadak C, Ulrich W, Sinzinger H. Morphological changes in the umbilical arteries of babies born to pre-eclamptic mothers: an ultrastructural study. Placenta. 1984;5 (5): 419–426.CrossRefGoogle Scholar
  22. 22.
    Gilabert R, Bellart J, Jove M, Miralles RM, Piera V. Endothelial cell lesion in preeclampsia. Morphofunctional study using umbilical endothelial cells. Gynecol Obstet Invest. 1999;47 (2): 95–101.CrossRefGoogle Scholar
  23. 23.
    Bertrand C, Duperron L, St-Louis J. Umbilical and placental vessels: modifications of their mechanical properties in preeclampsia. Am J Obstet Gynecol. 1993;168 (5): 1537–1546.CrossRefGoogle Scholar
  24. 24.
    Remuzzi G, Marchesi D, Zoja C, et al. Reduced umbilical and placental vascular prostacyclin in severe pre-eclampsia. Prostaglandins. 1980;20 (1): 105–110.CrossRefGoogle Scholar
  25. 25.
    Geva E, Ginzinger DG, Zaloudek CJ, Moore DH, Byrne A, Jaffe RB. Human placental vascular development: vasculogenic and angiogenic (branching and nonbranching) transformation is regulated by vascular endothelial growth factor-A, angiopoietin-1, and angiopoietin-2. J Clin Endocrinol Metab. 2002;87 (9): 4213–4224.CrossRefGoogle Scholar
  26. 26.
    Castellucci M, Kosanke G, Verdenelli F, Huppertz B, Kaufmann P. Villous sprouting: fundamental mechanisms of human placental development. Hum Reprod Update. 2000;6 (5): 485–494.CrossRefGoogle Scholar
  27. 27.
    Torry DS, Hinrichs M, Torry RJ. Determinants of placental vascularity. Am J Reprod Immunol. 2004;51 (4): 257–268.CrossRefGoogle Scholar
  28. 28.
    Wang K, Jiang YZ, Chen DB, Zheng J. Hypoxia enhances FGF2- and VEGF-stimulated human placental artery endothelial cell proliferation: roles of MEK1/2/ERK1/2 and PI3K/AKT1 pathways. Placenta. 2009;30 (12): 1045–1051.CrossRefGoogle Scholar
  29. 29.
    Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973;52 (11): 2745–2756.CrossRefGoogle Scholar
  30. 30.
    Arnaoutova I, George J, Kleinman HK, Benton G. The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art. Angiogenesis. 2009;12 (3): 267–274.CrossRefGoogle Scholar
  31. 31.
    Ben-Yosef Y, Miller A, Shapiro S, Lahat N. Hypoxia of endothelial cells leads to MMP-2-dependent survival and death. Am J Physiol Cell Physiol. 2005;289 (5): C1321–C1331.CrossRefGoogle Scholar
  32. 32.
    Fong TA, Shawver LK, Sun L, et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. 1999;59 (1): 99–106.PubMedGoogle Scholar
  33. 33.
    Miura S, Matsuo Y, Saku K. Transactivation of KDR/Flk-1 by the B2 receptor induces tube formation in human coronary endothelial cells. Hypertension. 2003;41 (5): 1118–1123.CrossRefGoogle Scholar
  34. 34.
    Mayhew TM, Charnock-Jones DS, Kaufmann P. Aspects of human fetoplacental vasculogenesis and angiogenesis. III. Changes in complicated pregnancies. Placenta. 2004;25 (2–3): 127–139.CrossRefGoogle Scholar
  35. 35.
    Ali KZ, Burton GJ, Morad N, Ali ME. Does hypercapillarization influence the branching pattern of terminal villi in the human placenta at high altitude?. Placenta. 1996;17 (8): 677–682.CrossRefGoogle Scholar
  36. 36.
    Burton GJ, Charnock-Jones DS, Jauniaux E. Regulation of vascular growth and function in human placenta. Reproduction. 2009;138 (6): 895–902.CrossRefGoogle Scholar
  37. 37.
    Akercan F, Cirpan T, Terek MC, et al. The immunohistochemical evaluation of VEGF in placenta biopsies of pregnancies complicated by preeclampsia. Arch Gynecol Obstet. 2008;277 (2): 109–114.CrossRefGoogle Scholar
  38. 38.
    Jirkovska M, Janacek J, Kalab J, Kubinova L. Three-dimensional arrangement of the capillary bed and its relationship to microrheology in the terminal villi of normal term placenta. Placenta. 2008;29 (10): 892–897.CrossRefGoogle Scholar
  39. 39.
    Maynard S, Epstein FH, Karumanchi SA. Preeclampsia and angiogenic imbalance. Annu Rev Med. 2008;59:61–78.CrossRefGoogle Scholar
  40. 40.
    Masuyama H, Segawa T, Sumida Y, et al. Different profiles of circulating angiogenic factors and adipocytokines between early- and late-onset pre-eclampsia. BJOG. 2010;117 (3): 314–320.CrossRefGoogle Scholar

Copyright information

© Society for Reproductive Investigation 2011

Authors and Affiliations

  • Amie J. Moyes
    • 1
    • 2
    • 3
    Email author
  • David Maldonado-Pérez
    • 1
  • Gillian A. Gray
    • 2
  • Fiona C. Denison
    • 1
  1. 1.Centre for Reproductive Biology, The Queen’s Medical Research InstituteUniversity of EdinburghEdinburghUK
  2. 2.Centre for Cardiovascular Sciences, The Queen’s Medical Research InstituteUniversity of EdinburghEdinburghUK
  3. 3.Department of PharmacologyUniversity College LondonLondonUK

Personalised recommendations