Advertisement

Flexible Interim Analyses in Clinical Trials Using Multistage Adaptive Test Designs

  • Gernot WassmerEmail author
  • Reinhard Eisebitt
  • Silke Coburger
Article

Abstract

Data-dependent interim analyses are a useful tool in confirmatory Phase III or IV clinical research. In particular, redesigning the sample size in an interim analysis based on the results observed to date considerably improves the power of the trial since the best available information at the time is used for the sample size adjustment. In recent years, several methods were proposed that enable a flexible design through the use of adaptive interim analyses while maintaining the type I error rate. In this article, these methods are briefly reviewed. We recommend a strategy that copes well with the demands of practice. Examples illustrate the use of multistage adaptive designs that make it possible to calculate confidence intervals and bias adjusted point estimates.

Key Words

Adaptive designs Early stopping Group sequential tests 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jennison C, Turnbull BW. Group Sequential Methods with Applications to Clinical Trials. Boca Raton, London, New York, Washington, DC: Chapman & Hall; 2000.Google Scholar
  2. 2.
    Birkett MA, Day SJ. Internal pilot studies for estimating sample size. Stat Med., 1994;13:2455–2463.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Fleming TR, Harrington DP, O’Brien PC. Designs for group sequential trials. Contr Clin Trials., 1984;5:348–361.CrossRefGoogle Scholar
  4. 4.
    Gould AL. Interim analysis for monitoring clinical trials that do not materially affect the type I error rate. Stat Med., 1992;11:53–66.Google Scholar
  5. 5.
    Gould AL. Planning and revising the sample size for a trial. Stat Med., 1995;14:1039–1051.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Hayre LS. Group sequential sampling with variable group sizes. J R Stat Soc B., 1985;47:90–97.Google Scholar
  7. 7.
    Herson J, Wittes J. The use of interim analysis for sample size adjustment. Drug Inf J., 1993;27:753–760.CrossRefGoogle Scholar
  8. 8.
    Jennison C, Turnbull BW. Group sequential tests and repeated confidence intervals. In Ghosh BK, Sen PK, eds. Handbook of Sequential Analysis. New York, NY: Marcel Dekker; 1991;283–311.Google Scholar
  9. 9.
    Kieser M, Friede T. Re-calculating the sample size in internal pilot study designs with control of the type I error rate. Stat Med., 2000;19:901–911.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Kieser M, Friede T. Blinded sample size reestimation in multiarmed clinical trials. Drug Inf J., 2000;34:455–460.CrossRefGoogle Scholar
  11. 11.
    Proschan MA, Follmann DA, Waclawiw MA. Effects on assumption violations on type I error rate in group sequential monitoring. Biometrics., 1992;48:1131–1143.CrossRefGoogle Scholar
  12. 12.
    Proschan MA, Wittes J. An improved double sampling procedure based on the variance. Biometrics., 2000;56:1183–1187.CrossRefGoogle Scholar
  13. 13.
    Wittes J, Brittain E. The role of internal pilot studies in increasing the efficiency of clinical trials. Stat Med., 1990;9:65–72.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Wittes JT, Schabenberger O, Zucker DM, Brittain E, Proschan M. Internal pilot studies I: Type I error rate of the naive t-test. Stat Med., 1999;18:3481–3491.CrossRefGoogle Scholar
  15. 15.
    Zucker DM, Wittes JT, Schabenberger O, Brittain E. Internal pilot studies II: Comparison of various procedures. Stat Med., 1999;18:3493–3509.CrossRefGoogle Scholar
  16. 16.
    Fisher LD. Self-designing clinical trials. Stat Med., 1998;17:1551–1562.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Shen Y, Fisher L. Statistical inference for self-designing clinical trials with a one-sided hypothesis. Biometrics., 1999;55:190–197.PubMedCrossRefGoogle Scholar
  18. 18.
    Bauer P. Multistage testing with adaptive designs. Biom und Inform in Med und Biol., 1989;20:130–148.Google Scholar
  19. 19.
    Bauer P, Könne K. Evaluation of experiments with adaptive interim analyses. Biometrics., 1994;50:1029–1041.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bauer P, Röhmel J. An adaptive method for establishing a dose-response relationship. Stat Med., 1995;14:1595–1607.PubMedCrossRefGoogle Scholar
  21. 21.
    Bauer P, Kieser M. Combining different phases in the development of medical treatments within a single trial. Stat Med., 1999;18:1833–1848.PubMedCrossRefGoogle Scholar
  22. 22.
    Bauer P, Brannath W, Posch M. Flexible two-stage designs. Methods of Information in Medicine. Germany, Schattaues; 2001;40:117–121.PubMedCrossRefGoogle Scholar
  23. 23.
    Proschan MA, Hunsberger SA. Designed extension of studies based on conditional power. Biometrics., 1995;51:1315–1324.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Coburger S, Wassmer G. Conditional bias adjusted point estimates in adaptive group sequential test designs. Biometrical J. 2001;forthcoming.Google Scholar
  25. 25.
    Chi GYH, Liu Q. The attractiveness of the concept of a prospectively designed two-stage clinical trial. J Biopharm Statist., 1999;9:537–547.CrossRefGoogle Scholar
  26. 26.
    Cui L, Hung HMJ, Wang SJ. Modification of sample size in group sequential clinical trials. Biometrics., 1999;55:853–857.PubMedCrossRefGoogle Scholar
  27. 27.
    Denne JS. Estimation following extension of a study on the basis of conditional power. J Biopharm Statist., 2000;10:131–144.CrossRefGoogle Scholar
  28. 28.
    Friede T, Kieser M. A comparison of methods for adaptive sample size adjustment. Stat Med. 2001;20:forthcoming.PubMedCrossRefGoogle Scholar
  29. 29.
    Hellmich M. Monitoring clinical trials with multiple arms. Biometrics. 2001;forthcoming.Google Scholar
  30. 30.
    Hommel G. Adaptive modifications of hypotheses after an interim analysis. Biometrical J. 2001;43:forthcoming.CrossRefGoogle Scholar
  31. 31.
    Kieser M, Bauer P, Lehmacher W. Inference on multiple endpoints in clinical trials with adaptive interim analyses. Biometrical J., 1999;41:261–277.CrossRefGoogle Scholar
  32. 32.
    Kropf S, Hommel G, Schmidt U, Brickwedel J, Jepsen MS. Multiple comparison of treatments with stable multivariate tests in a two-stage adaptive design, including a test for non-inferiority. Biometrical J., 2000;42:951–965.CrossRefGoogle Scholar
  33. 33.
    Lang T, Auterith A, Bauer P. Trend tests with adaptive scoring. Biometrical J., 2000;42:1007–1020.CrossRefGoogle Scholar
  34. 34.
    Lehmacher W, Kieser M, Hothorn L. Sequential and multiple testing for dose-response analysis. Drug Inf J., 2000;34:591–597.CrossRefGoogle Scholar
  35. 35.
    Lehmacher W, Wassmer G. Adaptive sample size calculations in group sequential trials. Biometrics., 1999;55:1286–1290.PubMedCrossRefGoogle Scholar
  36. 36.
    Liu Q, Chi GYH. On sample size and inference for two-stage adaptive designs. Biometrics. 2001;57:forthcoming.PubMedCrossRefGoogle Scholar
  37. 37.
    Müller HH, Schäfer H. Adaptive group sequential designs for clinical trials: Combining the advantages of adaptive and of classical group sequential approaches. Biometrics. 2001;57:forthcoming.PubMedCrossRefGoogle Scholar
  38. 38.
    Neuhäuser M. An adaptive location-scale test. Biometrical J. 2001;forthcoming.Google Scholar
  39. 39.
    Posch M, Bauer P. Adaptive two stage designs and the conditional error function. Biometrical J., 1999;41:689–696.CrossRefGoogle Scholar
  40. 40.
    Posch M, Bauer P. Interim analysis and sample size assessment. Biometrics., 2000;56:1170–1176.CrossRefGoogle Scholar
  41. 41.
    Shun Z, Yuan W, Brady WE, Hsu H. Type I error in sample size re-estimations based on observed treatment difference. Stat Med., 2001;20:497–513.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Wassmer G. Multistage adaptive test procedures based on Fisher’s product criterion. Biometrical J., 1999;41:279–293.CrossRefGoogle Scholar
  43. 43.
    Wassmer G. A technical note on the power determination for Fisher’s combination test. Biometrical J., 1997;39:831–838.CrossRefGoogle Scholar
  44. 44.
    Wassmer G. A comparison of two methods for adaptive interim analyses in clinical trials. Biometrics., 1998;54:696–705.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Wassmer G, Lehmacher W. On the determination of one-sided confidence limits in adaptive interim analysis. Proceedings der 42. Jahrestagung der GMDS, München MMV Medizin. 1997;340–344.Google Scholar
  46. 46.
    Wassmer G. Statistical test procedures for group sequential and adaptive plans in clinical trials. Theoretical concepts and practical solutions with SAS. Köln: Verlag Alexander Mönch; 1999.Google Scholar
  47. 47.
    Wassmer G. Basic concepts of group sequential and adaptive group sequential test procedures. Stat Papers., 2000;41:253–279.CrossRefGoogle Scholar
  48. 48.
    Hedges LV, Olkin I. Statistical Methods for Meta-Analysis. New York: Academic Press; 1985.Google Scholar
  49. 49.
    Pocock SJ. Group sequential methods in the design and analysis of clinical trials. Biometrika., 1977;64:191–199.CrossRefGoogle Scholar
  50. 50.
    Pocock SJ. Interim analyses for randomized clinical trials: the group sequential approach. Biometrics., 1982;38:153–162.PubMedCrossRefGoogle Scholar
  51. 51.
    O’Brien PC, Fleming TR. A multiple testing procedure for clinical trials. Biometrics., 1979;35:549–556.CrossRefGoogle Scholar
  52. 52.
    Lan KKG, DeMets DL. Discrete sequential boundaries for clinical trials. Biometrika., 1983;70:659–663.CrossRefGoogle Scholar
  53. 53.
    Wang SK, Tsiatis AA. Approximately optimal one-parameter boundaries for group sequential trials. Biometrics., 1987;43:193–199.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Wassmer G, Bock W. Tables of Δ-class boundaries for group sequential trials. Biom und Inform in Med und Biol., 1999;30:190–194.Google Scholar
  55. 55.
    DeMets DL, Ware JH. Group sequential methods for clinical trials with a one-sided hypothesis. Biometrika., 1980;67:651–660.CrossRefGoogle Scholar
  56. 56.
    DeMets DL, Ware JH. Asymmetric group sequential boundaries for monitoring clinical trials. Biometrika., 1982;69:661–663.CrossRefGoogle Scholar
  57. 57.
    McPherson K. On choosing the number of interim analyses in clinical trials. Stat Med., 1982;1:25–36.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Jennison C, Turnbull BW. Exact calculations for sequential t, chi-square and F tests. Biometrika., 1991;78:133–141.Google Scholar
  59. 59.
    Braitman LE. Statistical estimates and clinical trials. J Biopharm Stat., 1993;3:249–256.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Emerson SS. Computation of the uniform minimum variance unbiased estimator of the normal mean following a group sequential trial. Computers Biomed Res., 1993;26:68–73.CrossRefGoogle Scholar
  61. 61.
    Emerson SS, Fleming TR. Parameter estimation following group sequential hypothesis testing. Biometrika., 1990;77:875–892.CrossRefGoogle Scholar
  62. 62.
    Emerson SS, Kittelson JM. A computationally simpler algorithm for the UMVUE of a normal mean following a sequential trial. Biometrics., 1997;53:365–369.PubMedCrossRefGoogle Scholar
  63. 63.
    Kim K. Point estimation following group sequential tests. Biometrics., 1989;45:613–617.PubMedCrossRefGoogle Scholar
  64. 64.
    Liu A, Hall WJ. Unbiased estimation following a group sequential test. Biometrika., 1999;86:71–78.CrossRefGoogle Scholar
  65. 65.
    Pinheiro JC, DeMets DL. Estimating and reducing bias in group sequential designs with Gaussian independent increment structure. Biometrika., 1997;84:831–845.CrossRefGoogle Scholar
  66. 66.
    Whitehead J. On the bias of maximum likelihood estimation following a sequential test. Biometrika., 1986;73:573–581.CrossRefGoogle Scholar
  67. 67.
    Jennison C, Turnbull BW. Interim analysis: the repeated confidence interval approach. J R Stat Soc B., 1989;51:305–361.Google Scholar
  68. 68.
    Phillips A, Ebbutt A, France L, Morgan D. The International Conference on Harmonization guideline “Statistical Principles for Clinical Trials”: Issues in applying the guideline in practice. Drug Inf J., 2000;34:337–348.CrossRefGoogle Scholar
  69. 69.
    ICH. Note for Guidance on Statistical Principles for Clinical Trials. (ICH Topic E9, Step 4, CPMP/ICH/363/96). ICH—Technical Coordination. London: European Medicinal Evaluations Agency: 1998.Google Scholar
  70. 70.
    EaSt. Software for the design and interim monitoring of group sequential clinical trials, 2000. Cytel Software Corporation.Google Scholar
  71. 71.
    Wassmer G, Eisebitt R. ADDPLAN 2001: Adaptive Designs—Plans and Analyses. Cologne, Germany: University of Cologne; 2001.Google Scholar

Copyright information

© Drug Information Association, Inc 2001

Authors and Affiliations

  • Gernot Wassmer
    • 1
    Email author
  • Reinhard Eisebitt
    • 2
  • Silke Coburger
    • 1
  1. 1.Institut für Medizinische Statistik, Informatik und EpidemiologieUniversität zu KölnKölnGermany
  2. 2.ClinResearch GmbHCologneGermany

Personalised recommendations