Research on Chemical Intermediates

, Volume 24, Issue 2, pp 197–211 | Cite as

Catalytic carbonylation for the synthesis of chemical intermediates

  • Young Gul Kim
  • Jae Sung Lee
  • Kyung Hee Lee


Chemistry related to three catalytic carbonylation reactions is discussed. Synthesis of diphenylurea from nitrobenzene, aniline, and CO gives isolated yields above 98% at 100–120 °C and 15–60 bar of CO in the presence of a palladium (II) complex, PPh3 and NEt4Cl. Experimental evidence was provided to prove a new reaction stoichiometry and involvement of a carbamoyl intermediate. In carbonylation of HCHO over ion exchange resin catalysts, reaction temperature, time, pressure, and solvent were important variables to obtain high yields of methyl glycolate. Carbonylation of isobutylphenylethanol at 120°C and 40 bar of CO in the presence of PdCl2−PPh3−HCl gives 98% yield of α-(4-isobutylphenyl) propionic acid (ibuprofen). Each catalyst component had a definite role that is indispensable for an efficient overall reaction.


Aniline PPh3 Nitrobenzene HCHO Glycolic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Keim (Ed.), Catalysis in C 1 Chemistry, D. Reidel, Dordrecht, 1983.Google Scholar
  2. 2.
    D.R. Fahey (Ed.), Industrial Chemical via C 1 Processes, American Chemical Society, Washington D. C., 1987.Google Scholar
  3. 3.
    J.S. Lee, J.C. Kim, and Y.G. Kim, Appl. Catal. 57, 1 (1990).CrossRefGoogle Scholar
  4. 4.
    M. Cheong, S.H. Lee, J.C. Kim, J.S. Lee, and Y.G. Kim, J. Chem. Soc., Chem. Commun. 661 (1990).Google Scholar
  5. 5.
    H.C. Woo, K.Y. Park, Y.G. Kim, I. Nam, J.S. Chung and J.S. Lee, Appl. Catal. 75, 267 (1991).CrossRefGoogle Scholar
  6. 6.
    M. Cheong, S.H. Lee, Y.S. Sa, J.C. Kim, J.S. Lee, and Y.G. Kim, J. Mol. Catal. 68, 277 (1991).CrossRefGoogle Scholar
  7. 7.
    K.Y. Park, W.K. Seo, and J.S. Lee, Catal. Lett. 11, 349 (1991).CrossRefGoogle Scholar
  8. 8.
    S.J. Choi, J.S. Lee, and Y.G. Kim, J. Mol. Catal. 85, 109 (1993).CrossRefGoogle Scholar
  9. 9.
    K.M. Kim, M. Cheong, J.C. Kim, J.S. Lee, and Y.G. Kim, Korean J. Chem. Eng. 7, 259 (1990).CrossRefGoogle Scholar
  10. 10.
    E.J. Kim, S.H. Lee, K.H. Park, and J.S. Lee, Korean J. Chem. Eng. 8, 53 (1991).CrossRefGoogle Scholar
  11. 11.
    J.S. Lee, J.W. Woo, C.W. Lee, K.S. Hong, and J.K. Yeo, Korean J. Chem. Eng. 7, 145 (1990).CrossRefGoogle Scholar
  12. 12.
    J.S. Lee, C.W. Lee, S.M. Lee, and K.H. Park, J. Mol. Catal. 61, L15 (1990).CrossRefGoogle Scholar
  13. 13.
    J.S. Lee, S.M. Lee, J.K. Yeo, C.W. Lee, and J.S. Lee, Ind. Eng. Chem. Res. 30, 1456 (1991).CrossRefGoogle Scholar
  14. 14.
    S.M. Lee, N.S. Cho, K.D. Kim, J.S. Oh, C.W. Lee, and J.S. Lee, J. Mol. Catal. 73, 43 (1992).CrossRefGoogle Scholar
  15. 15.
    K.D. Kim, S.M. Lee, N.S. Cho, J.S. Oh, C.W. Lee, and J.S. Lee, J. Mol. Catal. 75, L1 (1992).CrossRefGoogle Scholar
  16. 16.
    S.Y. Lee, J.C. Kim, J.S. Lee, and Y.G. Kim, Ind. Eng. Chem. Res. 32, 253 (1993).CrossRefGoogle Scholar
  17. 17.
    C.W. Lee, J.S. Lee, S.M. Lee, N.S. Cho, K.D. Kim, and J.S. Oh, J. Mol. Catal. 81, 17 (1993).CrossRefGoogle Scholar
  18. 18.
    C.W. Lee, S.M. Lee, J.S. Oh, and J.S. Lee, Catal. Lett. 19, 217 (1993).CrossRefGoogle Scholar
  19. 19.
    H.S. Yun, K.H. Lee, and J.S. Lee, J. Mol. Catal. A 95, 11 (1995).CrossRefGoogle Scholar
  20. 20.
    J.-Y. Yoon, E.J. Jang, K.H. Lee, and J.S. Lee, J. Mol. Catal. A 118, 181 (1997).CrossRefGoogle Scholar
  21. 21.
    H.A. Dieck, R.M. Laine, and R.F. Heck, J. Org. Chem. 40, 2819 (1975).CrossRefGoogle Scholar
  22. 22.
    P. Giannoccaro, J. Organometall. Chem. 336, 271 (1987).CrossRefGoogle Scholar
  23. 23.
    Y. Tsuji, Y. Takeuchi, and Y. Watanabe, J. Organometall. Chem. 290, 249 (1985).CrossRefGoogle Scholar
  24. 24.
    24. B.K. Nefedov, N.S. Lergeeva, and Ya. T. Eidus, Izv. Akad. Nauk SSSR, Ser. Khim. 349 (1976).Google Scholar
  25. 25.
    B.K. Nefedov, N.S. Sergeeva, and Ya. T. Eidus, Izv. Akad. Nauk SSR, Ser. Khim. 807 (1973).Google Scholar
  26. 26.
    V. Macho, J. Hudec, M. Polievka, and M. Filadelfyova, Chem. Prum. 25, 140 (1975).Google Scholar
  27. 27.
    K. Kondo, N. Sonoda, and S. Tsutsumi, J. Chem. Soc., Chem. Commun. 307 (1972).Google Scholar
  28. 28.
    S. Senti, C. Crotti, M. Pizzotti, and F. Porta, J. Org. Chem. 53, 1243 (1988).CrossRefGoogle Scholar
  29. 29.
    S.H. Han, J.S. Song, P.D. Macklin, S.T. Nguyen, and G.L. Geoffroy, Organometallics 8, 2127 (1989).CrossRefGoogle Scholar
  30. 30.
    S. Fukuoka, M. Chono, and M. Kohno, J. Org. Chem. 49, 1458 (1984).CrossRefGoogle Scholar
  31. 31.
    R.M. Smith, PEP Review 94-1-2, SRI International, Menro Park, 1995.Google Scholar
  32. 32.
    J.M. Berty. In: Applied Industrial Catalysis B.L. Leach (Ed.), vol. 1, Academic Press, New York, 1983, p. 207.Google Scholar
  33. 33.
    R.L. Pruett and W.E. Walker, U.S. Patent 3 957 857, 1976.Google Scholar
  34. 34.
    S.E. Jacobson, J. Mol. Catal. 41, 163 (1987).CrossRefGoogle Scholar
  35. 35.
    A. Spencer, J. Organomet. Chem. 194, 113 (1980).CrossRefGoogle Scholar
  36. 36.
    K. Nishimura, S. Uchinmi, K. Fujii, and H. Itattani, Prepr.-Am. Chem. Soc., Div. Pet. Chem. 24, 355 (1979).Google Scholar
  37. 37.
    J. Kollar, Chemtech 504 (1984).Google Scholar
  38. 38.
    S. Suzuki, J.B. Wikes, R.G. Wall, and S.J. Lapporte. In: Catalytic Conversion of Synthesis Gas and Alcohols to Chemicals, R.G. Herman (Ed.), Plenum, New York, 1984, p. 221.Google Scholar
  39. 39.
    Y. Souma and H. Sano, Chem. Soc. Jpn. 2, 263 (1982).Google Scholar
  40. 40.
    D.E. Hendriksen, Prepr.-Am. Chem. Soc., Div. Fuel Chem. 28, 176 (1983).Google Scholar
  41. 41.
    N. Sugita, Sekiyu Gakkaishi, 34, 13 (1991).Google Scholar
  42. 42.
    G. Cavinato, and L. Toniolo, J. Organomet. Chem. 398, 187 (1990).CrossRefGoogle Scholar
  43. 43.
    C. Pisano, A. Mezzetti, and G. Consiglio, Organometallics 11, 20 (1992).CrossRefGoogle Scholar
  44. 44.
    G. Consiglio, L. Kollar, and R. Koller, J. Organomet. Chem. 396, 375 (1990).CrossRefGoogle Scholar
  45. 45.
    G. Consiglio, S.C.A. Nefken, C. Pisano, and F. Wenzinger, Helvetica Chimmica Acta 74, 323 (1991).CrossRefGoogle Scholar
  46. 46.
    J.C. Barborak, and K. Cann, Organometallics 1, 1726 (1982).CrossRefGoogle Scholar
  47. 47.
    R. Bertani, G. Cavinato, L. Toniolo, and G. Vasapollo, J. Mol. Catal. 84, 165 (1993).CrossRefGoogle Scholar
  48. 48.
    G. Consiglio, Catalytic Asymmetric Synthesis 273 (1982).Google Scholar
  49. 49.
    H. Alper and N. Hamel, J. Am. Chem. Soc. 112, 2803 (1990).CrossRefGoogle Scholar
  50. 50.
    H.J. Federsel, Chemtech, 24 (1993).Google Scholar
  51. 51.
    A.S.C. Chen, Chemtech, 76 (1993).Google Scholar
  52. 52.
    H. Alper, J.B. Woell, B. Despeyroux, and D.J.H. Smith, J. Chem. Soc. Chem. Commun. 1270 (1983).Google Scholar

Copyright information

© Springer 1998

Authors and Affiliations

  • Young Gul Kim
    • 1
  • Jae Sung Lee
    • 1
  • Kyung Hee Lee
    • 1
  1. 1.Department of Chemical Engineering and School of Environmental EngineeringPohang University of Science and TechnologyPohangKorea

Personalised recommendations