Skip to main content
Log in

Photocatalytic degradation of 4-chlorophenol: A mechanistically-based model

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The photocatalytic degradation of 4-CP was mathematically modelled using the mechanistic insights and data presented in an earlier study [1]. The solution and surface concentrations of reacting species were calculated by solving a system of differential equations that account for oxidation reactions of dissolved and adsorbed species, adsorption and desorption, reduction of oxygen, and hole-electron recombination. The differential equations were integrated over discrete time-periods and annular regions of the photoreactor. The resulting model predicts the trends observed in studies in other laboratories using different experimental apparati. Using the model it is possible to predict effects of reactor geometry, TiO2 loading, light intensity, and mixing on the course of TiO2 photocatalytic oxidation. The model verifies the importance of surface reactions, and reveals the need to better understand the fate and role of oxygen in TiO2 photocatalytic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Stafford, K.A. Gray, and P.V. Kamat, J. Catal., accepted.

  2. J. Cunningham, and G. Al-Sayyed, J. Chem. Soc. Faraday Trans, 86, 3935 (1990).

    Article  CAS  Google Scholar 

  3. C.S. Turchi, and D.F. Ollis, J. Catal. 122, 178 (1990).

    Article  CAS  Google Scholar 

  4. U. Stafford, K.A. Gray, and P.V. Kamat, J. Phys. Chem. 98, 6343 (1994).

    Article  CAS  Google Scholar 

  5. U. Stafford, Ph.D. Dissertation, University of Notre Dame, 1994.

  6. Farhataziz and A.B. Ross, Nat. Stand. Ref. Data Ser. 1977.

  7. G.V. Buxton, C.L. Greenstock, W.P. Helman, and A.B. Ross, J. Phys. Chem. Ref. Data 17, 513 (1988).

    CAS  Google Scholar 

  8. G.V. Buxton, In: The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis, J.H. Baxendal and F. Busi (Eds.), D. Reidel, Dortrecht, 1981, p. 241.

    Google Scholar 

  9. D. Lawless, N. Serpone, and D. Meisel, J. Phys. Chem. 95, 5166 (1991).

    Article  CAS  Google Scholar 

  10. O.I. Micic, Y. Zhang, K.R. Cromack, A.D. Trifunac, and M.C. Thurnauer, J. Phys. Chem. 97, 7277 (1993).

    Article  CAS  Google Scholar 

  11. J. Cunningham, and P. Sedlák, J. Photochem. Photobiol. A: Chem. 77 255 (1994).

    Article  CAS  Google Scholar 

  12. L.S. Lee, P.S.C. Rao, and M.L. Brusseau, Environ. Sci. Technol. 25, 722 (1991).

    Article  CAS  Google Scholar 

  13. U. Stafford, K.A. Gray, P.V. Kamat, and A. Varma, Chem. Phys. Lett. 205, 55 (1993).

    Article  CAS  Google Scholar 

  14. K.A. Gray, and U. Stafford, Res. Chem. Intermed. 20, 835 (1994).

    Article  CAS  Google Scholar 

  15. H. Gerischer and A. Heller, J. Phys. Chem 95, 5261 (1991).

    Article  CAS  Google Scholar 

  16. H. Gerischer, and A. Heller, J. Electrochem. Soc. 139, 113 (1992).

    Article  CAS  Google Scholar 

  17. H. Gerischer, Electrochim. Acta 38, 3 (1993).

    Article  CAS  Google Scholar 

  18. H. Gerischer, J. Phys. Chem. 95, 1356 (1991).

    Article  CAS  Google Scholar 

  19. H. Gerischer. In: Photocatalytic Purification and Treatment of Water and Air, D.F. Ollis and H. Al-Ekabi (Eds.), Elsevier, Amsterdam, 1993 p. 1.

    Google Scholar 

  20. G. Munuera, V. Rives-Arnan, and A. Saucedo, J. Chem. Soc., Faraday Trans 1, 75, 736 (1979).

    Article  CAS  Google Scholar 

  21. A.R. Gonzalez-Elipe, G. Munuera, and J. Soria, J. Chem. Soc., Faraday Trans. 1, 75, 748 (1979).

    Article  CAS  Google Scholar 

  22. G. Munuera, A.R. Gonzalez-Elipe, and J. Soria, J. Chem. Soc. Faraday Trans. 1, 76, 1538 (1980).

    Article  Google Scholar 

  23. G. Munuera, J. Soria, J.C. Conesa, J. Sanz, A.R. Gonzalez-Elipe, A. Navio, E.J. Lopez Molina, A. Muñoz, and J.P. Espinos, In: Catalysis on the Energy Scene, S. Kaliaguine, and A. Mahay (Eds.), Elsevier, Amsterdam, 1984, p. 335.

    Google Scholar 

  24. G. Munuera, A.R. Gonzalez-Elipe, V. Rives-Arnau, A. Navio, P. Malet, J. Soria, J.C. Conesa, and J. Sanz. In: Adsorption and Catalysis on Oxide Surfaces, M. Che and G.C. Bond (Eds.), Elsevier, Amsterdam, 1984, p. 335

    Google Scholar 

  25. A.J. Hoffman, E.R. Carraway, and M.R. Hoffmann, Environ. Sci. Technol. 28, 776 (1994).

    Article  CAS  Google Scholar 

  26. J.P. Hoare. In: Standard Potentials in Aqueous Solution, A.J. Bard, R. Parsons, and J. Jordan (Eds.), Marcel Dekker, New York, 1985, p. 49.

    Google Scholar 

  27. R.A. Marcus, J. Chem. Phys., 24, 966 (1956).

    Article  CAS  Google Scholar 

  28. R.A. Marcus, J. Chem. Phys. 43, 679 (1965).

    Article  CAS  Google Scholar 

  29. V. Augugliaro, L. Palmisamo, A. Sclafani, C. Minero, and E. Pelizzetti, Toxicol. Environ. Chem. 16, 89 (1988).

    Article  CAS  Google Scholar 

  30. A.L. Fahrenbruch, and R.H. Bube, Fundamentals of Solar Cells, Academic Press, New York, 1983.

    Google Scholar 

  31. R.C. Weast and M.J. Astle (Eds.), Handbook of Chemistry and Physics, CRC Press, Boca Raton, Florida, 61st Edn., 1980

    Google Scholar 

  32. IMSL, Inc., Houston. User' Manual, IMSL Math/Library. FORTRAN Subroutines for Mathematical Applications, Volume 2, 1989

  33. C.W. Gear, Numerical Initial-Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1971.

    Google Scholar 

  34. K. Vinodgopal, U. Stafford, K.A. Gray and P.V. Kamat, J. Phys. Chem. 98, 6797 (1994).

    Article  CAS  Google Scholar 

  35. G. Al-Sayyed, J.-C. D'Oliveira, and P. Pichat, J. Photochem. Photobiol. A: Chem. 58, 99 (1991).

    Article  CAS  Google Scholar 

  36. J.-C. D'Oliveira, G. Al-Sayyed, and P. Pichat, Environ. Sci. Technol. 24, 990 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stafford, U., Gray, K.A. & Kamat, P.V. Photocatalytic degradation of 4-chlorophenol: A mechanistically-based model. Res. Chem. Intermed. 23, 355–388 (1997). https://doi.org/10.1163/156856797X00574

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856797X00574

Keywords

Navigation