Skip to main content
Log in

Sonolytic enhancement of the bactericidal activity of irradiated titanium dioxide suspensions in water

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Irradiated TiO2 suspensions in water were used to inactivate Escherichia coli and Hansenula polymorpha. Two types of batch reactors employing static and recirculating solutions were used in this study. Sonolysis using a 20 kHz ultrasonic unit was found to enhance the microorganism inactivation in all instances, although the enhancement was more modest for the batch recirculation reactor. These data are interpreted within the framework of four possible mechanisms. The mechanism based on sonolytic creation of ·OH appears to provide the most satisfactory explanation of the data trends. The present data also implicate ·OH as the dominant bactericidal agent in irradiated TiO2 suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Matsunaga, R. Tomoda, T. Nakajima, and H. Wake, FEMS Microbiol. Lett. 29, 211 (1985).

    Article  CAS  Google Scholar 

  2. T. Matsunaga, R. Tomoda, T. Nakajima, N. Nakamura, and T. Kamine, Appl. Environ. Microbiol. 54, 1330 (1988).

    CAS  Google Scholar 

  3. R.W. Matthews. In: Photocatalytic Purification and Treatment of Water and Air, D.F. Ollis and H. Al-Ekabi (Eds.), Elsevier, Amsterdam, 1993, pp. 121–138.

    Google Scholar 

  4. J.C. Ireland, P. Klostermann, E.W. Rice, and R.M. Clark, Appl. Environ. Microbiol. 59, 1668 (1993).

    CAS  Google Scholar 

  5. J.C. Sjogren and R.A. Sierka, Appl. Environ. Microbiol. 60, 344 (1994).

    CAS  Google Scholar 

  6. C. Wei, Z. Zainal, W.-Y. Lin, N. Williams, R.L. Smith, K. Rajeshwar, and A. Kruzic, Environ. Sci. Technol. 28, 934 (1994).

    Article  CAS  Google Scholar 

  7. A. Fujishima, L.A. Nagahara, H. Yoshiki, K. Ajito, and K. Hashimoto, Electrochim. Acta 39, 1229 (1994).

    Article  CAS  Google Scholar 

  8. R.J. Watts, S. King, M.P. Orr, G.C. Miller, and B.E. Henry, Wat. Res. 29, 95 (1995).

    Article  CAS  Google Scholar 

  9. T. Matsunaga and M. Okochi, Environ. Sci. Technol. 29, 501 (1995).

    Article  CAS  Google Scholar 

  10. I.M. Butterfield, P.A. Christensen, G.M. Walker, and C.S. Birch, J. Appl. Electrochem., in press (courtesy preprint).

  11. H. Alliger, Am. Lab. Oct., 25 (1975).

    Google Scholar 

  12. D.L. Currell and L. Zechmeister, J. Am. Chem. Soc. 80, 207 (1958).

    Article  Google Scholar 

  13. L. Zechmeister and E.F. Magoon, J. Am. Chem. Soc. 78, 2149 (1956).

    Article  CAS  Google Scholar 

  14. N. Serpone, R. Terzian, H. Hidaka, and E. Pelizzetti, J. Phys. Chem. 98, 2634 (1994).

    Article  CAS  Google Scholar 

  15. A. Durant, H. Francis, J. Reisse, and A. Kirsch-de Mesmaeker, Electrochim. Acta 41, 277 (1996).

    Article  CAS  Google Scholar 

  16. R.G. Compton, J.C. Eklund, F. Marken, and D.N. Waller, Electrochim. Acta 41, 315 (1996).

    Article  CAS  Google Scholar 

  17. P.V. Kamat and K. Vinodgopal, Langmuir, submitted for publication (courtesy preprint).

  18. K. Rajeshwar, J. Appl. Electrochem. 25, 1067 (1995).

    Article  CAS  Google Scholar 

  19. K. Rajeshwar, Chem. & Ind. 17 June, 454 (1996).

    Google Scholar 

  20. K. Rajeshwar and J.B. Ibanez, Environmental Electrochemistry, Academic Press, San Diego, in press.

  21. I. Fridovich, Arch. Biochem. Biophys. 247, 1 (1986).

    Article  CAS  Google Scholar 

  22. I. Fridovich. In: Oxygen Radicals and Tissue Injury, B. Halliwell (Ed.), Federation of American Societies for Experimental Biology, Bethesda, MD, 1998, pp. 1–5.

    Google Scholar 

  23. M.A. Gleeson and P.E. Sudberg, Yeast 4, 293 (1988).

    Article  CAS  Google Scholar 

  24. J.G. Jones and E. Bellion, J. Bacteriol. 173, 4959 (1991).

    CAS  Google Scholar 

  25. J.G. Jones and E. Bellion, Biochem. J. 280, 475 (1991).

    CAS  Google Scholar 

  26. R.L. Wolfe, Environ. Sci. Technol. 24, 768 (1990).

    Article  CAS  Google Scholar 

  27. C. Petrier, M. Micolle, G. Merlin, J.L. Luche, and G. Revady, Environ. Sci. Technol. 26, 1639 (1992).

    Article  CAS  Google Scholar 

  28. E.J. Hart and A. Henglein, J. Phys. Chem. 89, 4342 (1985).

    Article  CAS  Google Scholar 

  29. G.M. Rosen, M.J. Barber, and E.J. Rauckman, J. Biol. Chem. 258, 2225 (1983).

    CAS  Google Scholar 

  30. B.A. Freeman, G.M. Rosen, and M.J. Barber, J. Biol. Chem. 261, 6590 (1986).

    CAS  Google Scholar 

  31. B.H.J. Bielski, R.L. Arudi, and M.W. Sutherland, J. Biol. Chem. 258, 4759 (1983).

    CAS  Google Scholar 

  32. R. Cai, K. Hashimoto, A. Fujishima, and Y. Kubota, J. Electroanal. Chem. 326, 345 (1992).

    Article  CAS  Google Scholar 

  33. R. Cai, R. Baba, K. Hashimoto, Y. Kubota, and A. Fujishima, J. Electroanal. Chem. 360, 237 (1993).

    Article  CAS  Google Scholar 

  34. J.R. Bolton and S.R. Cater. In: Aquatic and Surface Photochemistry, G.R. Helz, R.G. Zepp, and D.G. Crosby (Eds.), Lewis Publishers, Boca Raton, FL, 1994, pp. 467–490.

    Google Scholar 

  35. For example, R.W. Matthews. In: Photochemical Conversion and Storage of Solar Energy, E. Pelizzetti and M. Schiavello (Eds.), Kluwer, The Netherlands, 1991, pp. 427–449.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevenson, M., Bullock, K., Lin, W.Y. et al. Sonolytic enhancement of the bactericidal activity of irradiated titanium dioxide suspensions in water. Res. Chem. Intermed. 23, 311–323 (1997). https://doi.org/10.1163/156856797X00547

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856797X00547

Keywords

Navigation