Skip to main content
Log in

Interaction of CO2 with small rutile crystallites-an EHMO study

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Several possible adsorption sites and adsorption geometries of CO2 on small rutile fragments were studied by Extended Hückel Molecular Orbital (EHMO) calculations. The parameters for the rutile part were optimised to reproduce the experimental rutile bulk structure and were tested in several small clusters up to [(TiO2)31(OH)32]32−•6H2O, a 175 atoms cluster. It was found that the average experimental bond legth can be reproduced with good accuracy. However the slight distortion of the TiO6 octahedra is calculated with the wrong sign (four long and two short Ti−O bonds). The agreement for the angle αO-Ti-O is less satisfactory. The study shows that CO2 can adsorb on fivefold coordinated surface titanium sites as well as surface oxygen sites. This means that CO2 can act as either Lewis base or acid. In the case of binding as a Lewis base, CO2 can adsorb linearly forming a single Ti−OCO bond, or interact with two neighboring Ti4+ sites. A chelating structure forming two Ti−O bonds was found to be weakly stable at the most. When CO2 behaves as a Lewis acid, a carbonate-like structure is formed by interaction with either terminal oxygen ions or bridging oxygen centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Anpo and Y. Kubokawa, Res. Chem. Intermed. 8 105 (1987).

    Article  CAS  Google Scholar 

  2. M. Anpo, Res. Chem. Intermed. 11, 67 (1989).

    Article  CAS  Google Scholar 

  3. M. Anpo et al., Bull. Chem. Soc. Jpn. 64, 543 (1991).

    Article  CAS  Google Scholar 

  4. N. Serpone, R. Terzian, D. Lawless, and J.-M. Herrmann, Adv. Electron Transfer Chemistry 3, 33 (1993).

    CAS  Google Scholar 

  5. A.L. Linsebigler, G. Lu, and J.T. Yates, Jr., Chem. Rev. 95, 735 (1995).

    Article  CAS  Google Scholar 

  6. A. Fujishima and K. Honda, Nature 238, 37 (1972).

    Article  CAS  Google Scholar 

  7. A.J. Bard and M.A. Fox, Acc. Chem. Res. 28, 141 (1995).

    Article  CAS  Google Scholar 

  8. M. Anpo and K. Chiba, J. Mol. Catal. 74, 207 (1992).

    Article  CAS  Google Scholar 

  9. K. Ogura, M. Kawano, J. Yano, and Y. Sakata, J. Photochem. Photobiol. A: Chem. 66, 91 (1992).

    Article  CAS  Google Scholar 

  10. H. Yamashita, N. Kamada, H. He, K. Tanaka, and M. Anpo, Chem. Lett. 855 (1994).

  11. H. Yamashita et al., Energy Convers. Mgmt 36, 617 (1995).

    Article  CAS  Google Scholar 

  12. F. Saladin, L. Forss, and I. Kamber, J. Chem. Soc., Chem. Commun. 533 (1995).

  13. F. Saladin, A. Meier, and I. Kamber, Rev. Sci. Instrum. 67, 2406 (1996).

    Article  CAS  Google Scholar 

  14. T. Bredow and K. Jug, Chem. Phys. Lett. 223, 89 (1994).

    Article  CAS  Google Scholar 

  15. J. Burdett, Inorg. Chem. 24, 2244 (1985).

    Article  CAS  Google Scholar 

  16. C.-R. Wang and Y.-S. Xu, Surf. Sci. 219, L537 (1989).

    CAS  Google Scholar 

  17. B. Viswanathan and T. Lakshmi, Indian J. Chem. A 32, 937 (1993).

    Google Scholar 

  18. T. Bredow and K. Jug, Surf. Sci. 327, 398 (1995).

    Article  CAS  Google Scholar 

  19. H. Takaba et al., Energy Convers. Magmt 36, 439 (1995).

    Article  CAS  Google Scholar 

  20. D.C. Sayle, R.A. Catlow, M.-A. Perrin, and P. Nortier, J. Phys. Chem. Solids 56, 799 (1995).

    Article  CAS  Google Scholar 

  21. V.E. Henrich and P.A. Cox, The Surface Science of Metal Oxides, Cambridge University Press, UK, 1994.

    Google Scholar 

  22. R.J.D. Miller et al., Surface Electron Transfer Processes, VCH Publishers, New York, 1995.

    Google Scholar 

  23. G. Calzaferri and M. Brändle, QCMP Bull. 12 (1992), update May 1993.

  24. J. Howell et al., ICON8 quantum chemistry program performing extended-Hückel calculation, QCPE No. 344, 1978.

  25. A.B. Anderson and R. Hoffmann, J. Phys. Chem. 60, 4271 (1974).

    Article  CAS  Google Scholar 

  26. G. Calzaferri, L. Forss, and I. Kamber, J. Phys. Chem. 93, 5366 (1989).

    Article  CAS  Google Scholar 

  27. F. Savary, J. Weber, and G. Calzaferri, J. Phys. Chem. 97, 3722 (1993).

    Article  CAS  Google Scholar 

  28. N. Fitzpatrick and G. Murphy, Inorg. Chem. Acta 87, 41 (1984).

    Article  CAS  Google Scholar 

  29. H. Basch, A. Viste, and H. Gray, Theoret. Chim. Acta (Berl.) 3, 458 (1965).

    Article  CAS  Google Scholar 

  30. H. Basch and H. Gray, Theoret. Chim. Acta (Berl.) 4, 367 (1966).

    Article  CAS  Google Scholar 

  31. I. Kamber, ICON-UTILS — A Collection of Utilities to Visualize the Output of EHMO Calculations, 1996.

  32. Geomview, Version 1.5, Software Development Group, Geometry Center, Minneapolis, US, 1994, available for free at geom.umn.edu.

  33. Goodenough and Hamnett, Landolt-Börnstein, New Series III 17g.

  34. Y. Wang. In: Photophysical and Photochemical Processes of Semiconductor Nanoclusters, Vol. 19 of Adv. Photochem., D.C. Neckers, D.H. Volman, and G. von Brünau (Eds.), John Wiley & Sons, Inc., New York, 1995, pp. 179–234.

    Google Scholar 

  35. R. Hoffmann, Solids and Surfaces: A Chemist's View of Bonding in Extended Structures, VCH Verlagsgesellschaft mbH, Weinheim, 1988.

    Google Scholar 

  36. B. Poumellec, P. Durham, and G.Y. Guo, J. Phys.: Condens. Matter. 3, 8195 (1993).

    Article  Google Scholar 

  37. G. Ramis, G. Busca, and V. Lorenzelli, Mater. Chem. Phys. 29, 425 (1991).

    Article  CAS  Google Scholar 

  38. J. Raskó and F. Solymosi, J. Phys. Chem. 98, 7147 (1994).

    Article  Google Scholar 

  39. M.N. Burnett and C.K. Johnson, ORTEP-III: Oak Ridge Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, 1996, Oak Ridge National Laboratory Report ORNL-6895.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamber, I. Interaction of CO2 with small rutile crystallites-an EHMO study. Res. Chem. Intermed. 23, 735–753 (1997). https://doi.org/10.1163/156856797X00510

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856797X00510

Keywords

Navigation