Skip to main content
Log in

Laser flash photolysis studies on radical formation by H-atom abstraction of triplet vitamin K3 and by H-atom transfer via the triplet exciplex between triplet methyldihydroxynaphthalene and benzophenone

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Nanosecond laser photolysis techniques were incorporated to obtain (1) the absorption spectra and coefficients of triplet vitamin K3 (2-methyl-1,4-naphthoquinone, MNQ) and its ketyl radical (2-methylnaphthosemiquinone, 2MNQH*) in acetonitrile (ACN) as well as to reveal (2) the mechanisms for hydrogen atom abstraction of triplet MNQ (3MNQ*) from phenol which proceeded in a diffusion process with an efficiency of unity. On the other hand, the hydroxymethylnaphthoxy radical was produced with the benzophenone ketyl radical (BPK) by the hydrogen atom transfer from triplet 2-methyl-1,4-dihydroxynaphthalene (MDHNp) sensitized by triplet benzophenone to benzophenone (BP) via the triplet exciplex. The question to be addressed was, which was produced in the MDHNp-BP system, the 2-methyl or 3-methylnaphthosemiquinone radical? Comparing the absorption spectrum and coefficient of the radical produced via the triplet exciplex with those of the 2MNQH* obtained by H-atom abstraction of 3MNQ*, the radical formed with BPK was revealed to be 2MNQH*. The reasons for the preferable formation of 2MNQH* are discussed for H-atom abstraction as well as the transfer reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.A. Morton, Biochemistry of Quinones, Academic Press, New York, 1965.

    Google Scholar 

  2. F.L. Crane In: T.P. Singer (Ed.), Biological Oxidation, Interscience, New York, 1968.

    Google Scholar 

  3. T.E. King and Klingenburg, Electron and Coupled Energy Transfer in Biological Systems, Marcel Dekker, New York, 1971, Vol. 1, Parts A and B.

    Google Scholar 

  4. R.H. Thompson, Naturally Occurring Quinones 2nd Ed., Academic Press, New York, 1971.

    Google Scholar 

  5. A.K. Lamola and N.J. Turro. In: A. Weissenberger (Ed.), Energy Transfer and Organic Photochemistry, Technique of Organice Chemistry, Vol XIV, Interscience, New York, 1974.

    Google Scholar 

  6. R.H. Thompson. In: S. Patai (Ed.), The Chemistry of Quinonoid Compounds, Part 1, Wiley-Interscience, New York, 1979; J.Q. Chambers. In: S. Patai (Ed.), The Chemistry of Quinonoid Compounds, Part 2, Wiley-Interscience, New York, 1979.

    Google Scholar 

  7. K. Maruyama and A. Osuka. In: S. Patai and Z. Rappoport (Eds.), The Chemistry of Quinonoid Compounds, Wiley-Interscience, New York, 1988, Vol. 2, Ch. 13.

    Google Scholar 

  8. J.M. Bruce, Quart. Rev. 21, 405 (1967).

    Article  CAS  Google Scholar 

  9. T.-F. Ho, A.R. MacIntosh, and J.R. Bolton, Nature 286, 254 (1980).

    Article  CAS  Google Scholar 

  10. J.H. Fendler, J. Phys. Chem. 89, 2730 (1985).

    Article  CAS  Google Scholar 

  11. N.K. Bridge and G. Porter, Proc. Roy. Soc. London A 244, 259 (1958); Ibid., Proc. Roy. Soc. London A 244, 276 (1958).

    Article  CAS  Google Scholar 

  12. F. Wilkinson, G.M. Seddon, and K. Tickle, Ber. Bunsenges. Phys. Chem. 72, 315 (1968).

    CAS  Google Scholar 

  13. J. Nafisi-Movaghar and F. Wilkinson, Trans. Faraday Soc. 66, 2257 (1970); Ibid., Trans. Faraday Soc., 66, 2268 (1970).

    Article  CAS  Google Scholar 

  14. E.J. Land, Trans. Faraday Soc. 65, 2815 (1969).

    Article  CAS  Google Scholar 

  15. G.J. Fisher and E.J. Land, Photochem. Photobiol. 37, 27 (1983).

    Article  CAS  Google Scholar 

  16. R.L. Wilson, Trans. Faraday Soc. 67, 3020 (1971); J. Chem. Soc. Faraday Trans. I 69, 814 (1973).

    Article  Google Scholar 

  17. B.E. Hulme, E.J. Land, and G.O. Phillips, J. Chem. Soc. Faraday Trans. 68, 2003 (1972)

    CAS  Google Scholar 

  18. P.S. Rao and E. Hayon, J. Phys. Chem. 77, 2274 (1973).

    Article  CAS  Google Scholar 

  19. E. Amouyal and R. Bensasson, J. Chem. Soc. Faraday Trans. 1, 73, 1561 (1977); J.-C. Ronfard-Haret, R. Bensasson, and E. Amouyal, J. Chem. Soc. Faraday Trans. 1 76, 2432 (1980).

    Article  CAS  Google Scholar 

  20. R. Scheerer and M. Grätzel, J. Am. Chem. Soc. 99, 865 (1977).

    Article  CAS  Google Scholar 

  21. M. Migita, T. Okada, N. Mataga, S. Nishitani, N. Kurata, Y. Sakata, and S. Misumi, Chem. Phys. Lett. 84, 263 (1981).

    Article  CAS  Google Scholar 

  22. L.V. Natarajan and R.E. Blankenship, Photochem. Photobiol. 37, 329 (1983).

    Article  CAS  Google Scholar 

  23. J.R. Miller, L.T. Calcaterra, and G.L. Closs, J. Am. Chem. Soc. 106, 3047 (1984).

    Article  CAS  Google Scholar 

  24. J.A. Schmit, A. Siemiarczuk, A.C. Weedon, and J.R. Bolton, J. Am. Chem. Soc. 107, 6112 (1985).

    Article  Google Scholar 

  25. K. Hamanoue, T. Nakayama, Y. Yamamoto, K. Sawada, Y. Yuhara, and H. Teranishi, Bull. Chem. Soc. Jpn. 61, 1121 (1988); K. Hamanoue, T. Nakayama, K. Ibuki, and A. Otani, J. Chem. Soc. Faraday Trans. 87, 3731 (1991).

    Article  CAS  Google Scholar 

  26. J.R. Wagner, J.E. van Lier, and L.J. Johnston, Photochem. Photobiol. 52, 333 (1990).

    Article  CAS  Google Scholar 

  27. J. Mayor and R. Krasiukianis, J. Chem. Soc. Faraday Trans. 87, 2943 (1991).

    Article  Google Scholar 

  28. S.K. Wong and J.K.S. Wan, J. Am. Chem. Soc. 94, 7197 (1972); S.K. Wong, W. Sytnyk, and J.K.S. Wan, Can. J. Chem. 50, 3052 (1972); S.K. Wong, D.A. Hutchinson, and J.K.S. Wan, Can. J. Chem. 52, 251 (1974).

    Article  CAS  Google Scholar 

  29. S.K. Wong, J. Am. Chem. Soc. 100, 5488 (1978).

    Article  CAS  Google Scholar 

  30. A.J. Elliot and J.K.S. Wan, J. Phys. Chem. 82, 444 (1978).

    Article  CAS  Google Scholar 

  31. S. Frydkjaker and L.T. Muus, Chem. Phys. 51, 335 (1980).

    Article  Google Scholar 

  32. Y. Sakaguchi, H. Hayashi, H. Murai, and Y. I'Haya, Chem. Phys. Lett. 110, 275 (1984); Y. Sakaguchi and H. Hayashi, J. Phys. Chem. 88, 1437 (1984).

    Article  CAS  Google Scholar 

  33. H. Murai, M. Minami, T. Hayashi, and Y.J. I'Haya, Chem. Phys. 93, 333 (1985).

    Article  CAS  Google Scholar 

  34. M. Okazaki, S. Sakata, R. Konaka, and T. Shiga, J. Phys. Chem. 91, 1131 (1987).

    Article  CAS  Google Scholar 

  35. I. Amada, M. Yamaji, M. Sase, and H. Shizuka, J. Chem. Soc. Faraday Trans. 91, 2751 (1995).

    Article  CAS  Google Scholar 

  36. M. Yamaji, Y. Aihara, T. Itoh, S. Tobita, and H. Shizuka, J. Phys. Chem. 98, 7014 (1994).

    Article  CAS  Google Scholar 

  37. T. Suzuki, Y. Kajii, Y. Shibuya, and K. Obi, Chem. Phys. 161, 447 (1992).

    Article  CAS  Google Scholar 

  38. M. Yamaji, T. Sekiguchi, M. Hoshino, and H. Shizuka, J. Phys. Chem., 96, 9656 (1992).

    Article  Google Scholar 

  39. R.V. Bensasson, J. Chem. Soc. Faraday Trans. 1, 76, 1801 (1980).

    Article  Google Scholar 

  40. S.L. Murov, I. Carmichael, and G.L. Hug, Handbook of Photochemistry, 2nd. Ed., revised and expanded, Marcel Dekker, New York, 1993.

    Google Scholar 

  41. E.J. Land, G. Porter, and E. Strachan, Trans. Faraday Soc. 57, 1885 (1961); E.J. Land and G. Porter, Trans. Faraday Soc. 59, 2016 (1963).

    Article  CAS  Google Scholar 

  42. P.K. Das, M.V. Encinas, S. Steeken, and J.C. Scaiano, J. Am. Chem. Soc. 103, 4162 (1981).

    Article  CAS  Google Scholar 

  43. H. Shizuka, H. Hagiwara, and M. Fukushima, J. Am. Chem. Soc. 107, 7816 (1985).

    Article  CAS  Google Scholar 

  44. S. Kohno, M. Hoshino, and H. Shizuka, J. Phys. Chem. 95, 5489 (1991).

    Article  CAS  Google Scholar 

  45. S. Kaneko, M. Yamaji, M. Hoshino, and H. Shizuka, J. Phys. Chem. 96, 8028 (1992).

    Article  CAS  Google Scholar 

  46. M. Yamaji, K. Tamura, and H. Shizuka, J. Chem. Soc. Faraday Trans. 90, 533 (1994).

    Article  CAS  Google Scholar 

  47. H. Shizuka, and M. Yamaji, Proc. Indian Acad. Sci. 105, 747 (1993).

    Article  CAS  Google Scholar 

  48. K. Okada, M. Yamaji, and H. Shizuka, Chem. Phys. Lett., in press.

  49. T. Kiyota, M. Yamaji, and H. Shizuka, J. Phys. Chem. 100, 672 (1996).

    Article  CAS  Google Scholar 

  50. E.J. Land, Proc. R. Soc. London A 305, 457 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amada, I., Yamaji, M., Sase, M. et al. Laser flash photolysis studies on radical formation by H-atom abstraction of triplet vitamin K3 and by H-atom transfer via the triplet exciplex between triplet methyldihydroxynaphthalene and benzophenone. Res. Chem. Intermed. 23, 121–134 (1997). https://doi.org/10.1163/156856797X00277

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856797X00277

Keywords

Navigation