Abstract
The formation of an EPR active species was observed when lithium diisopropylamide (LDA) was employed as the base for deprotonation of fluoroacetates. The EPR of a glass prepared from the reaction mixture showed an intense signal. The solution EPR spectrum of the sample was independent of temperature, and exhibited a hyperfine structure which allowed identification of the radical species as diisopropyl nitroxide. Generation of the enolate by metalation of ethyl fluoroidoacetate gave no evidence for autoxidation occurring in the absence of diisopropylamine.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References and Footnotes
D.A. Evans. In: Asymmetric Synthesis, J.D. Morrison (Ed.), Academic, Orlando, 1984, Vol. 3, Chapter 1. (b) C.H. Heathcock, In: Asymmetric Synthesis, J.D. Morrison (Ed.), Academic, Orlando, 1984, Vol. 3, Chapter 2. (c) C.H. Heathcock. In: Comprehensive Carbanion Chemistry, E. Buncel and T. Durst (Eds.), Elsevier, Amsterdam, 1984, Part B, Chapter 4. (d) D.A. Evans, J.V. Nelson, and T.R. Taber, Topics in Stereochemistry 13, 1–115 (1982).
S. Brandaenge, O. Dahlman, and L. Moerch, J. Am. Chem. Soc. 103, 4452–4458 (1981). (b) H. Molines, M.H. Massoudi, D. Cantacuzene, and C. Wakselmann, Synthesis 322–324 (1983).
J.T. Welch, S. Eswarakrishnan, K. Seper, and J.S. Samartino, J. Org. Chem. 49, 4720–4721 (1984). (b) J.T. Welch and S. Eswarakrishnan, J. Chem. Soc. Chem. Commun. 186–188. (1985).
J.T. Welch and K.W. Seper, Tetrahedron Letters 25, 5247–5250, (1984). (b) J.T. Welch and S. Eswarakrishnan, J. Org. Chem. 50, 5403–5405 (1985). (c) H. Nakai, N. Hamanaka, H. Miyake, and M. Hayashi, Chem. Lett. 1499–1502 (1979).
J.T. Welch and J.S. Samartino, J. Org. Chem. 50, 3663–3664 (1985).
C. Kowalski, X. Creary, A.J. Rollin, and M.C. Burke, J. Org. Chem. 43, 2601–2608 (1978). (b) N. DeKimpe, M. Palamareva, and N. Schamp, J. Org. Chem. 50, 2993–2995 (1985).
M. Newcomb and M.T. Burchill, J. Am. Chem. Soc. 106, 2450–2451 (1984).
E.C. Ashby, A.B. Goel, and R.N. DePriest, J. Org. Chem. 46, 2431–2433 (1981).
R.E. Ireland, R.H. Mueller, and A.K. Willard, J. Am. Chem. Soc. 98, 2868–2877 (1976).
E.J. Corey and A.W. Gross, Tetrahedron Letters 25, 495–498 (1984).
D. Seebach, Proceedings of the The Robert A. Welch Foundation Conferences on Chemical Research. XXVII. Stereospecificity in Chemistry and Biochemistry, Nov. 7–9, 1983, Houston TX, 1984, p. 93–145. (b) D. Seebach, Angew. Chem. Int. Ed. Engl. 27, 1624–1654 (1988). (c) E. Juaristi, A.K. Beck, J. Hansen, T. Matt, T. Mukhopadhyay, M. Simson, and D. Seebach, Synthesis 1271–1290 (1993).
T. Laube, J.D. Dunitz, and D. Seebach, Helv. Chim. Acta 68, 1373–1393 (1985). (b) R. Amstutz, W.B. Schweizer, D. Seebach, and J.D. Duntiz, Helv. Chim. Acta 64, 2617 (1981). (c) D. Seebach, R. Amstutz, and J.D. Dunitz, Helv. Chim. Acta 64, 2622 (1981). (d) T. Maetzke, C.P. Hidber, and D. Seebach, J. Am. Chem. Soc. 112, 8248 (1990). (e) T. Maetzke and D. Seebach, Organometallics 9, 3032 (1990). (f) D.A. Plattner, W. Petter, and D. Seebach, Chimia 48, 128 (1994).
J.D. Aebi and D. Seebach, Helv. Chim. Acta 68, 1507 (1985). (b) A.S. Galiano-Roth, Y.-J. Kim, J.H Gilchrist, A.T. Harrison, D.J. Fuller, and D.B. Collum J. Am. Chem. Soc. 113, 5053 (1991). (c) P.L. Hall, J.H. Gilchrist, and D.B. Collum J. Am. Chem. Soc. 113, 9571 (1991).
J.R. Roberts and K.U. Ingold, J. Am. Chem. Soc. 95, 3228–3225 (1973). (b) W.C. Danen and T.T. Kensler, J. Am. Chem. Soc. 92, 5235–5237 (1970). (c) W.C. Danen and F.A. Neugebauer, Angew. Chem. Intl. Ed. 14, 783–789 (1975).
D. Mackay and W.A. Waters, J. Chem. Soc. [C] 813–816 (1966). (b) B.R. Cowley and W.A. Waters, J. Chem. Soc. 1228–1231 (1961).
J.Q. Adams, S.N. Nicksic, and J.R. Thomas, J. Chem. Phys. 45, 654–661 (1966).
G.A. Olah and S. Kuhn, Chem. Ber 89, 864–865 (1956).
B.C. Englund, Organic Syntheses, J. Wiley and Sons, New York, Collect. Vol IV, 1963, pp. 423–424.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Welch, J.T., Plummer, J.S. & Herbert, R.W. The generation of the diisopropyl nitroxide radical during the reaction of lithium diisopropylamide with α-fluoroacetate esters. Res. Chem. Intermed. 22, 791–798 (1996). https://doi.org/10.1163/156856796X00485
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1163/156856796X00485