Skip to main content
Log in

The generation of the diisopropyl nitroxide radical during the reaction of lithium diisopropylamide with α-fluoroacetate esters

Research on Chemical Intermediates Aims and scope Submit manuscript

Cite this article

Abstract

The formation of an EPR active species was observed when lithium diisopropylamide (LDA) was employed as the base for deprotonation of fluoroacetates. The EPR of a glass prepared from the reaction mixture showed an intense signal. The solution EPR spectrum of the sample was independent of temperature, and exhibited a hyperfine structure which allowed identification of the radical species as diisopropyl nitroxide. Generation of the enolate by metalation of ethyl fluoroidoacetate gave no evidence for autoxidation occurring in the absence of diisopropylamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Footnotes

  1. D.A. Evans. In: Asymmetric Synthesis, J.D. Morrison (Ed.), Academic, Orlando, 1984, Vol. 3, Chapter 1. (b) C.H. Heathcock, In: Asymmetric Synthesis, J.D. Morrison (Ed.), Academic, Orlando, 1984, Vol. 3, Chapter 2. (c) C.H. Heathcock. In: Comprehensive Carbanion Chemistry, E. Buncel and T. Durst (Eds.), Elsevier, Amsterdam, 1984, Part B, Chapter 4. (d) D.A. Evans, J.V. Nelson, and T.R. Taber, Topics in Stereochemistry 13, 1–115 (1982).

    Google Scholar 

  2. S. Brandaenge, O. Dahlman, and L. Moerch, J. Am. Chem. Soc. 103, 4452–4458 (1981). (b) H. Molines, M.H. Massoudi, D. Cantacuzene, and C. Wakselmann, Synthesis 322–324 (1983).

    Article  CAS  Google Scholar 

  3. J.T. Welch, S. Eswarakrishnan, K. Seper, and J.S. Samartino, J. Org. Chem. 49, 4720–4721 (1984). (b) J.T. Welch and S. Eswarakrishnan, J. Chem. Soc. Chem. Commun. 186–188. (1985).

    Article  CAS  Google Scholar 

  4. J.T. Welch and K.W. Seper, Tetrahedron Letters 25, 5247–5250, (1984). (b) J.T. Welch and S. Eswarakrishnan, J. Org. Chem. 50, 5403–5405 (1985). (c) H. Nakai, N. Hamanaka, H. Miyake, and M. Hayashi, Chem. Lett. 1499–1502 (1979).

    Article  CAS  Google Scholar 

  5. J.T. Welch and J.S. Samartino, J. Org. Chem. 50, 3663–3664 (1985).

    Article  CAS  Google Scholar 

  6. C. Kowalski, X. Creary, A.J. Rollin, and M.C. Burke, J. Org. Chem. 43, 2601–2608 (1978). (b) N. DeKimpe, M. Palamareva, and N. Schamp, J. Org. Chem. 50, 2993–2995 (1985).

    Article  CAS  Google Scholar 

  7. M. Newcomb and M.T. Burchill, J. Am. Chem. Soc. 106, 2450–2451 (1984).

    Article  CAS  Google Scholar 

  8. E.C. Ashby, A.B. Goel, and R.N. DePriest, J. Org. Chem. 46, 2431–2433 (1981).

    Article  Google Scholar 

  9. R.E. Ireland, R.H. Mueller, and A.K. Willard, J. Am. Chem. Soc. 98, 2868–2877 (1976).

    Article  CAS  Google Scholar 

  10. E.J. Corey and A.W. Gross, Tetrahedron Letters 25, 495–498 (1984).

    Article  CAS  Google Scholar 

  11. D. Seebach, Proceedings of the The Robert A. Welch Foundation Conferences on Chemical Research. XXVII. Stereospecificity in Chemistry and Biochemistry, Nov. 7–9, 1983, Houston TX, 1984, p. 93–145. (b) D. Seebach, Angew. Chem. Int. Ed. Engl. 27, 1624–1654 (1988). (c) E. Juaristi, A.K. Beck, J. Hansen, T. Matt, T. Mukhopadhyay, M. Simson, and D. Seebach, Synthesis 1271–1290 (1993).

  12. T. Laube, J.D. Dunitz, and D. Seebach, Helv. Chim. Acta 68, 1373–1393 (1985). (b) R. Amstutz, W.B. Schweizer, D. Seebach, and J.D. Duntiz, Helv. Chim. Acta 64, 2617 (1981). (c) D. Seebach, R. Amstutz, and J.D. Dunitz, Helv. Chim. Acta 64, 2622 (1981). (d) T. Maetzke, C.P. Hidber, and D. Seebach, J. Am. Chem. Soc. 112, 8248 (1990). (e) T. Maetzke and D. Seebach, Organometallics 9, 3032 (1990). (f) D.A. Plattner, W. Petter, and D. Seebach, Chimia 48, 128 (1994).

    Article  CAS  Google Scholar 

  13. J.D. Aebi and D. Seebach, Helv. Chim. Acta 68, 1507 (1985). (b) A.S. Galiano-Roth, Y.-J. Kim, J.H Gilchrist, A.T. Harrison, D.J. Fuller, and D.B. Collum J. Am. Chem. Soc. 113, 5053 (1991). (c) P.L. Hall, J.H. Gilchrist, and D.B. Collum J. Am. Chem. Soc. 113, 9571 (1991).

    Article  CAS  Google Scholar 

  14. J.R. Roberts and K.U. Ingold, J. Am. Chem. Soc. 95, 3228–3225 (1973). (b) W.C. Danen and T.T. Kensler, J. Am. Chem. Soc. 92, 5235–5237 (1970). (c) W.C. Danen and F.A. Neugebauer, Angew. Chem. Intl. Ed. 14, 783–789 (1975).

    Article  CAS  Google Scholar 

  15. D. Mackay and W.A. Waters, J. Chem. Soc. [C] 813–816 (1966). (b) B.R. Cowley and W.A. Waters, J. Chem. Soc. 1228–1231 (1961).

  16. J.Q. Adams, S.N. Nicksic, and J.R. Thomas, J. Chem. Phys. 45, 654–661 (1966).

    Article  CAS  Google Scholar 

  17. G.A. Olah and S. Kuhn, Chem. Ber 89, 864–865 (1956).

    Article  CAS  Google Scholar 

  18. B.C. Englund, Organic Syntheses, J. Wiley and Sons, New York, Collect. Vol IV, 1963, pp. 423–424.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Welch, J.T., Plummer, J.S. & Herbert, R.W. The generation of the diisopropyl nitroxide radical during the reaction of lithium diisopropylamide with α-fluoroacetate esters. Res. Chem. Intermed. 22, 791–798 (1996). https://doi.org/10.1163/156856796X00485

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856796X00485

Keywords

Navigation