Skip to main content
Log in

Molecular libraries in liquid phase via UGI-MCR

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Standard chemistry prescribes the conversion of one or two compounds into their products. In contrast, Eintopf (one-pot) multicomponent reactions (MCRs) involve at least three different compounds. One-pot MCRs are a useful tool in combinatorial chemistry: From a mixture of educts a large number of products can be simultaneously formed in liquid phase, called a soluble molecular library. The member compounds of such libraries are investigated simultaneously for desired properties, e.g. antibiotic activity.

The main constraint is, that the underlying chemistry must not produce unknown side reactions and must lead to a broad spectrum of stable products with high yields.

Isocyanide multicomponent chemistry allows the generation of soluble libraries of very different sizes, which are easy to screen for biological or pharmaceutical efficacy using the algorithms presented. Products can easily be enumerated and the kinetics of the isocyanide chemistry is simple to investigate.

Combinatorial chemistry is capable of generating and optimizing leads faster and with fewer resources than by conventional means. Combinatorial chemistry based on isocyanide chemistry is by far the most important and most impressive technique in use today to reducing time and costs associated with lead generation and optimization during the drug discovery process. The simplicity of the reaction conditions involved means that the generation and screening of libraries can be automated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Ugi, A. Dömling, and W. Hörl, Endeavour 18, 115 (1994).

    Article  CAS  Google Scholar 

  2. I. Ugi and C. Steinbrückner, Chem. Ber. 94, 734 (1961). (b) I. Ugi, Isonitrile Chemistry, Academic Press, New York, 1971, p. 149.

    Article  CAS  Google Scholar 

  3. S.Y. Seuny and W.C. Still, Angew. Chem. 106, 2517 (1994).

    Article  Google Scholar 

  4. D.W. Gordon and J. Steele, Biorganic and Medicinal Chemistry Letters 5, 47 (1994).

    Article  Google Scholar 

  5. M. Pátek, B. Drake and M. Lebl, Tetrahedron Lett. 35, 9169 (1994).

    Article  Google Scholar 

  6. S. Hobbs DeWitt, J.S. Kiely, C.J. Stankovic, M.C. Schroeder, D.M. Reynolds Cody, and M.R. Pavia, Proc. Natl. Acad. Sci. USA 90, 6909 (1993).

    Article  CAS  Google Scholar 

  7. M.J. Kurth, L.A. Ahlberg Randall, C. Chen, C. Melander, and R.B. Miller, J. Org. Chem. 59, 5862 (1994).

    Article  CAS  Google Scholar 

  8. L. Weber, Nachr. Chem. Tech. Lab. 42, 698 (1994).

    CAS  Google Scholar 

  9. C. Chen, L.A. Ahlberg Randall, R.B. Miller, A.D. Jones, and M.J. Kurth, J. Am. Chem. Soc. 116, 2661 (1994).

    Article  CAS  Google Scholar 

  10. M. Vincent et al., Tetrahedron Lett. 23, 1677 (1982); R. Patchett et al., Nature 288, 280 (1980).

    Article  CAS  Google Scholar 

  11. I. Ugi, Angew. Chem. 94, 826 (1982); I. Ugi, Angew. Chem. Int. Ed. 21, 810 (1982).

    Article  CAS  Google Scholar 

  12. G. Gokel et al., Academic Press, New York, 1971, p. 201; A. Failli, H. Immer, and M. Götz, Can. J. Chem. 57, 3257 (1979).

  13. M. Almstetter, Diploma Thesis, Technical University of Munich, 1995.

  14. A. Demharter, Doctoral Thesis, Technical University of Munich, 1993.

  15. S. Fushiya, S. Yamada, M. Matsuda, and S. Nozoe, Tetrahedron Lett. 35, 8201 (1994).

    Article  CAS  Google Scholar 

  16. E. Haslinger, Monatsh. Chem. 109, 749 (1978).

    Article  CAS  Google Scholar 

  17. R. Bossio, S. Marcaccini, P. Paoli, and R. Pepino, Synthesis 672 (1994).

  18. M. Göbel and I. Ugi, Tetrahedron Lett. 36, 6043 (1995).

    Article  Google Scholar 

  19. A. Dömling and I. Ugi, Angew. Chem. 105, 634 (1993); A. Dömling and I. Ugi, Angew. Chem. Int. Ed. 32, 563 (1993).

    Article  Google Scholar 

  20. A. Dömling, Doctoral Thesis, Technical University of Munich, 1993.

  21. K. Heyns and R. Hohlweg, Chem. Ber. 111, 1632 (1978).

    Article  CAS  Google Scholar 

  22. R.D. Guthrie and R.W. Irvine, Carbohydr. Res. 82, 225 (1980).

    Article  CAS  Google Scholar 

  23. G. Grewal, N. Kaila, and R.W. Franck, J. Org. Chem. 57, 2084 (1992).

    Article  CAS  Google Scholar 

  24. I. Ugi, A. Dömling, B. Gruber, M. Heilingbrunner, C. Heiß and W. Hörl, Bitterfeld, Germany, 1994.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Professor Ivar Ugi has the Chair of Department I of the Institute for Organic Chemistry and Biochemistry at the Technical University of Munich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ugi, I., Goebel, M., Gruber, B. et al. Molecular libraries in liquid phase via UGI-MCR. Res. Chem. Intermed. 22, 625–644 (1996). https://doi.org/10.1163/156856796X00115

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856796X00115

Keywords

Navigation