Skip to main content
Log in

Substituted 2-norbornyl carbenes

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A series of endo-6-substituted bicyclo[2.2.1]hept-2-yl carbenes have been generated by pyrolysis of the sodium salt of the tosylhydrazone precursors. The endo-6-trimethylsilyl and endo-6-thiomethoxy substituted carbenes give 1,3-migration of these substituents to the carbene center. However groups such as methyl, CH2SiMe3, phenyl, and methoxy are ineffective 1,3-migrating groups. The facile 1,3-migration of trimethylsilyl and thiomethoxy has been rationalized in terms of stabilized transition states where the migrating group interacts effectively with the carbene vacant orbital. In the cases of endo-6-thiomethoxy and methoxy derivatives, the carbene also inserts effectively into the methyl group of the substituent. Heteroatom stabilization of the transition state for C-H insertion facilitates these processes. Certain exo-6-substituted bicyclo[2.2.1]hept-2-yl carbenes have also been generated. While the exo-6-thiomethoxy and carbomethoxy systems give exclusive 1,3-hydrogen migration, the exo-6-sulfonyl derivative gives, in addition to 1,3-hydrogen migration, an alkene product derived from 1,2-hydrogen migration. The lowered propensity for 1,3-hydrogen migration is attributed to the strong electron-withdrawing sulfonyl group, which decreases the hydridic 1,3-interaction with the carbene vacant orbital.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. H.M. Frey and A.W. Scaplehorn, J. Chem. Soc. A 968 (1966).

  2. H.C. Brown, The Nonclassical Ion Problem Plenum Press, New York, 1977.

    Google Scholar 

  3. L. Friedman and H. Shechter, J. Am. Chem. Soc. 83, 3159 (1961).

    Article  CAS  Google Scholar 

  4. P.K. Freeman, D.E. George, and V.N.M. Rao, J. Org. Chem. 29, 1682 (1964).

    Article  CAS  Google Scholar 

  5. R.H. Shapiro, J.H. Duncan, and J.C. Clopton, J. Am. Chem. Soc. 89, 1442 (1967), and references therein.

    Article  CAS  Google Scholar 

  6. R.R. Sauers and R.J. Kiesel, J. Am. Chem. Soc. 89, 4695 (1967).

    Article  CAS  Google Scholar 

  7. J.W. Wilt and P.J. Chenier, J. Am. Chem. Soc. 90, 7366 (1968).

    Article  CAS  Google Scholar 

  8. E.P. Kyba and C.W. Hudson, J. Am. Chem. Soc. 98, 5696 (1976).

    Article  CAS  Google Scholar 

  9. P.K. Freeman, T.A. Hardy, J.R. Balyeat, and L.D. Wescott, Jr., J. Org. Chem. 42, 3356 (1977).

    Article  CAS  Google Scholar 

  10. P.K. Freeman and D.M. Balls, J. Org. Chem. 32, 2354 (1967).

    Article  CAS  Google Scholar 

  11. A. Nickon, F. Huang, R. Weglein, K. Matsuo, and H. Yagi, J. Am. Chem. Soc. 96, 5264 (1974).

    Article  CAS  Google Scholar 

  12. P.v.R. Schleyer, J. Am. Chem. Soc. 89, 699 (1967).

    Article  CAS  Google Scholar 

  13. X. Creary and Y.-S. Wang, Tetrahedron Lett. 30, 2493 (1989).

    Article  CAS  Google Scholar 

  14. a) K. Lal and R.G. Salomon, J. Org. Chem. 54, 2628 (1989). See also b) P.-A. Carrupt, Vogel, Tetrahedron Lett. 23, 2563 (1982).

    Article  CAS  Google Scholar 

  15. For a discussion of the tosylhydrazone salt pyrolysis method of diazocompound and carbene generation, see a) W.R. Bamford and T.S. Stevens, J. Chem. Soc. 4735 (1952); b) G.M. Kaufman, J.A. Smith, G.G. Vander Stouw, and H. Shecter, J. Am. Chem. Soc. 87, 935 (1965); c) X.C. Creary, Org. Synth. 64, 207 (1986).

  16. See J.B. Lambert, G.-T. Wang, R.B. Finzel, and D.H. Teramura, J. Am. Chem. Soc. 109, 7838 (1987) and references therein. See also E.W. Colvin, Silicon in Organic Synthesis, Butterworths, London, 1981, p. 15-20.

    Article  CAS  Google Scholar 

  17. C.J. Collins, Quart. Rev. Chem. Soc. 14, 357 (1960).

    Article  CAS  Google Scholar 

  18. For use of the analogous Me4CoLi2 reagent, see T. Kauffman, G. Hopp, B. Laarmann, D. Stegemann, and D. Wingbermuhle, Tetrahedron Lett. 31, 511 (1990).

    Article  Google Scholar 

  19. a) B. Capon, Q. Rev. Chem. Soc. 18, 45 (1964); b) B. Capon and S.P. McManus, Neighboring Group Participation, Plenum Press, New York, 1976.

    Article  CAS  Google Scholar 

  20. J.H. Robson and H. Shechter, J. Am. Chem. Soc. 89, 7113 (1967).

    Google Scholar 

  21. A.P. Rothwell, R.G. Cooks, T.-V. Singh, L. De Cárdenas, and H. Morrison, Org. Mass. Spectrom. 12, 757 (1985).

    Article  Google Scholar 

  22. W.v.E. Doering, L.H. Knox, and M. Jones, Jr., J. Org. Chem. 24, 136 (1959).

    Article  CAS  Google Scholar 

  23. X. Creary and S. McDonald, J. Ors. Chem. 50, 474 (1985).

    Article  CAS  Google Scholar 

  24. The structure of this product is based on spectral comparison with an authentic sample of 76 prepared by reduction of the lactone derived from endo-2-hydroxynorbornane-endo-6-carboxylic acid using a procedure analogous to that previously described. See G.R. Pettit and D.M. Piatak, J. Org. Chem. 27, 2127 (1962).

    Article  CAS  Google Scholar 

  25. The σP value of SO2CH3 is 0.73 while that of CO2CH3 is 0.44. These values indicate that SO2CH3 is a more potent electron-withdrawing group. See J. March, Advanced Organic Chemistry, 3rd Edition, John Wiley and Sons, New York, 1985, pp. 244.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Creary, X., Wang, Y.X. Substituted 2-norbornyl carbenes. Res. Chem. Intermed. 20, 201–222 (1994). https://doi.org/10.1163/156856794X00207

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856794X00207

Keywords

Navigation