Skip to main content
Log in

Synthesis of symmetrical alkyl-aromatics by use of shape selective catalysts

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Conclusions

The concept of shape selectivity is available to produce symmetrical dinuclear aromatic hydrocarbons such as 2,6-dialkylnaphthalene and 4,4′-dialkylbiphenyl, which are the raw materials for liquid crystals and polyester with superior properties, respectively. The ZSM-5 catalyst exhibits high activity and selectivity for the formation of p-xylene in the disproportionation and alkylation of toluene. The catalytic activity of ZSM-5 for the conversion of naphthalene derivatives is markedly low due to its small pore size, although symmetrical dinuclear aromatic hydrocarbons are selectively formed. The high catalytic activity is obtained with twelve-membered ring zeolites. Among these zeolites, mordenite is the most selective catalyst to produce symmetrical dinuclear aromatic hydrocarbons. The precise controls of the size of pore opening and the acidic property are required to enhance the selectivity for symmetrical dinuclear aromatic hydrocarbons. The non-zeolitic molecular sieves also present a great opportunity in high selective synthesis of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.B. Weisz and V.J. Frilette, J. Phys. Chem. 64, 382 (1960).

    Article  CAS  Google Scholar 

  2. P.B. Weisz, Pure Appl. Chem. 52, 2091 (1980).

    Article  CAS  Google Scholar 

  3. S.M. Csicsery, Zeolites 4, 202 (1984).

    Article  CAS  Google Scholar 

  4. S.M. Csicsery, Pure Appl. Chem. 58, 841 (1986).

    Article  CAS  Google Scholar 

  5. G.G. Eberhardt, J. Org. Chem. 30, 82 (1965).

    Article  CAS  Google Scholar 

  6. U.S. Patent, 3244758.

  7. Japan Kokai Tokkyo Koho, 2-96540.

  8. C. Dimitrov, Z. Popova, and M. Tuyen, React. Kinet. Catal. Lett. 8, 101 (1978).

    Article  CAS  Google Scholar 

  9. V. Solinas, R. Monaci, B. Marongiu, and L. Forni, Appl. Catal. 5, 171 (1983).

    Article  CAS  Google Scholar 

  10. V. Solinas, R. Monaci, B. Marongiu, and L. Forni, Appl. Catal. 9, 109 (1984).

    Article  CAS  Google Scholar 

  11. V. Solinas, R. Monaci, E. Rombi, and L. Forni, Stud. Surf. Sci. Catal. 34, 493 (1987).

    Article  CAS  Google Scholar 

  12. J. Weikamp and M. Neuber, in T. Inui, S. Namba, T. Tatsumi (Eds.), Stud. Surf. Sci. Catal. 60, 291 (1991).

  13. T. Matsuda, K. Yogo, T. Nagaura, and E. Kikuchi, Sekiyu Gakkaishi 33(4), 214 (1990).

    CAS  Google Scholar 

  14. T. Matsuda, K. Yogo, Y. Nagaura, and E. Kikuchi, Chem. Lett. 1085 (1990).

  15. R. Alberty and T.M. Bloomstein, J. Phys. Chem. Ref. Data 14, 921 (1985).

    Article  Google Scholar 

  16. E. Kikuchi, Y. Mogi, and T. Matsuda, Collect. Czech. Chem. Commun 57, 909 (1992).

    Article  CAS  Google Scholar 

  17. G. Suld and A.P. Stuart, J. Org. Chem. 29, 2939 (1964).

    Article  CAS  Google Scholar 

  18. T. Matsuda, Y. Mogi, A. Sasaki, and E. Kikuchi, Extended Abstracts of Intern. Symp. on Chem. Microporous Crystals, Tokyo, 1990, p. 139.

  19. D. Fraenkel, M. Cherniavsky, B. Ittash, and M. Levy, J. Catal. 101, 273 (1986).

    Article  CAS  Google Scholar 

  20. M. Neuber and J. Weitkamp, in J.C. Jansen, L. Moscou, M.F.M. Post (Eds.), Zeolites for the Recent Research Reports, Amsterdam, 1989, p. 425.

  21. E.G. Derouane. J. Catal. 100, 541 (1986).

    Article  CAS  Google Scholar 

  22. M. Neuber, H.G. Karge, and J. Weitkamp, Catal. Today 3, 11 (1988).

    Article  CAS  Google Scholar 

  23. G.A. Olah, J. Am. Chem. Soc. 98, 1839 (1976).

    Article  CAS  Google Scholar 

  24. A. Katayama, M. Toba, G. Takeuchi, F. Mizukami, S. Niwa and S. Mitamura, J. Chem. Soc. Chem. Commun. 39 (1991).

  25. P. Moreau, A. Finie, P. Geneste, and J. Solofo, J. Catal. 136, 487 (1992).

    Article  CAS  Google Scholar 

  26. G. Takeuchi, H. Okazaki, T. Kito, Y. Sugi, and T. Matsuzaki, Sekiyu Gakkaishi 34, 242 (1991).

    CAS  Google Scholar 

  27. T. Matsuzaki, Y. Sugi, T. Hanaoka, T. Takeuchi, H. Arakawa, T. Tokoro, and G. Takeuchi, Chem. Express 4, 413 (1989).

    CAS  Google Scholar 

  28. Y.Sugi, T. Hanaoka, G. Takeuchi, T. Tokoro, and G. Takeuchi, in T. Inui, S. Namba, and T. Tatsumi (Eds.), Stud. Surf. Sci. Catal. 60, 303 (1991).

  29. G.S. Lee, J.J. Maj, S.C. Rocke, and J.M. Garces, Catal. Lett. 2, 243 (1989).

    Article  CAS  Google Scholar 

  30. G.S. Lee, J.J. Maj, S.C. Rocke, and J.M. Garces, in S. Yoshida, N. Takezawa, and T. Ono (Eds.), Catalytic Science and Technology, Vol. 1, Kodansha-VCH, 1991, p. 385.

  31. E. Kikuchi, T. Urata, U. Saito, and T. Matsuda, Extended Abstracts of 9th Intern. Zeolite Conf., Montreal, 1992, RP37.

  32. G. Takeuchi, H. Okazaki, M. Yamaye, and T. Kito, Sekiyu Gakkaishi 34, 531 (1991).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuda, T., Kikuchi, E. Synthesis of symmetrical alkyl-aromatics by use of shape selective catalysts. Res Chem Intermed 19, 319–332 (1993). https://doi.org/10.1163/156856793X00136

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856793X00136

Keywords

Navigation