Skip to main content
Log in

The principle of microscopic reversibility in organic chemistry - a critique

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Conclusion

The principle of microscopic reversibility is one of the few generalising principles used in organic chemistry which have their roots in the fundamental laws of thermodynamics. It has, therefore, been highly popular.

However, although the principle has some important uses, its general application is not without pitfalls. The principle is easy to misunderstand and to misapply: indeed, some of its formulations are semantically dubious. The principle is most dangerous when used as a charm, for it is more subtle than some of its formulations suggest.

But above all, the principle may not be used for deducing or disproving the mechanism of a reaction, except when the mechanism in the reverse direction is known independently. For, such use is, perhaps, the deadliest misapplication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.P. Hammett, Physical Organic Chemistry, 2nd Ed., McGraw-Hill, New York, 1970, p. 142.

    Google Scholar 

  2. R.C. Tolman, Proc. Natl. Acad. Sci. USA, 11(1925)436.

    Article  CAS  Google Scholar 

  3. S. Dushman in H.S. Taylor and S. Glasstone (Eds.), A Treatise on Physical Chemistry, Vol. I, Van Nostrand, New York, 1942, p. 373.

    Google Scholar 

  4. J. Hine, Physical Organic Chemistry, 2nd Ed., McGraw-Hill, New York, 1962, p. 69.

    Google Scholar 

  5. J. March, Advanced Organic Chemistry, 3rd Ed., Wiley Eastern, New Delhi, 1985, p. 189.

    Google Scholar 

  6. C.K. Ingold, Structure and Mechanssm in Organic Chemistry, 2nd Ed., G. Bell and Sons, London, 1969, p. 250.

    Google Scholar 

  7. R.G. Pearson, Symmetry Rules for Chemical Reactions, Wiley, New York, 1976, p. 150; R.L. Burwell and R.G. Pearson, J. Phys. Chem., 70(1966)300.

    Google Scholar 

  8. T.H. Lowry and K.S. Richardson, Mechanssm and Theory in Organic Chemistry, 2nd Ed., Harper and Row, New York, 1981, 178.

    Google Scholar 

  9. G.W. Klumpp, Reactivity in Organic Chemistry, Wiley, New York, 1982, p. 310.

    Google Scholar 

  10. T.C. Bruice and J.J. Bruno, J. Am. Chem. Soc., 84(1962)2128.

    Article  CAS  Google Scholar 

  11. A.A. Frost and R.G. Pearson, Kinetics and Mechanism, 2nd Ed., Wiley, New York, 1961, pp. 335–350.

    Google Scholar 

  12. W.H. Saunders, Jr., and A.F. Cockerll, Mechanisms of Elimination Reactions, Wiley, New York, 1973, p. 222; D.V. Banthorpe, Elimination Reactions, Elsevier, Amsterdam, 1963, pp. 10, 147, 185, 195.

    Google Scholar 

  13. E.L. Eliel, Stereochemistry of Carbon Compounds, McGraw-Hill, New York, 1962, p. 225.

    Google Scholar 

  14. H.C. Brown, The Nonclassical Ion Problem, Plenum, New York, 1977, p. 94.

    Google Scholar 

  15. H.L. Goering and C.B. Schewene, J. Am. Chem. Soc., 87(1965)3516.

    Article  CAS  Google Scholar 

  16. W.P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-Hill, New York, 1962, p. 208.

    Google Scholar 

  17. J. Hine, Physical Organic Chemistry, 2nd Ed., McGraw-Hill, New York, 1962, pp. 68–69.

    Google Scholar 

  18. G. Hammes, Principles of Chemical Kinetics, Academcc Press, New York, 1978, p. 16.

    Google Scholar 

  19. E.D. Hughes, C.K. Ingold, EG. Thorpe and H.C. Volger, J. Chem. Soc., (1961)1133; H.B. Charman, E.D. Hughes, C.K. Ingold and H.C. Volger, ibid., (1961)1142.

  20. ER. Jensen and B. Rickborn, Electrophilic Substitution of Organomercurials, McGraw-Hill, New York, 1968, p. 157.

    Google Scholar 

  21. D.S. Matteson, Organometallic Reaction Mechanisms, Academcc Press, New York, 1974, pp. 94, 96; Organometal. Chem. Rev., 4(1969)263.

    Google Scholar 

  22. EH. Westheimer, Acc. Chem. Res., 1(1968)76; Mislow, Acc. Chem. Res., 3(1970)321.

    Google Scholar 

  23. H. Kwart and K.G. King, d-Orbitals in the Chemistry of Silicon, Phosphorus and Sulfur, Springer-Verlag, Berlin-Heidelberg, 1977, p. 122.

    Google Scholar 

  24. N.L. Allinger, M.P. Cava, D.C. De Jongh, C.R. Johnson, N.A. Lebel and C.L. Stevens, Organic Chemistry, Worth, New York, 1971, p. 857.

  25. C.A. Bunton, Nucleophilic Substitution at a Saturated Carbon Atom, Elsevier, Amsterdam, 1963, p. 37; A. Ledwith and L. Phillips, J. Chem. Soc., (1962)3796.

    Google Scholar 

  26. J.M. Harris, Prog. Phys. Org. Chem., 11(1974)89.

    Article  CAS  Google Scholar 

  27. W.P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-Hill, New York, 1969, p. 317.

    Google Scholar 

  28. J.G. Aston in H.S. Taylor and S. Glasstone (Eds.), A Treatise on Physical Chemistry, Vol. I, Van Nostrand, New York, 1942, p. 517.

    Google Scholar 

  29. a) K.J. Laidler, Chemical Kinetics, 2nd Ed., McGraw-Hill, New York, 1965, pp. 110–112; b) B.W. Morrissey, J. Chem. Educ, 52(1975)296; B.H. Mahan, ibid., 52(1975)299.

    Google Scholar 

  30. D.D. Fitts, Nonequilibrium Thermodynamics, McGraw-Hill, New York, 1962, p. 136.

    Google Scholar 

  31. G.N. Lewis, Proc. Natl. Acad. Sci. USA, 11(1925)179.

    Article  CAS  Google Scholar 

  32. K.J. Laidler, Theories of Chemical Reaction Rates, McGraw-Hill, New York, 1969, pp. 72–73.

    Google Scholar 

  33. L.P. Hammett, Physical Organic Chemistry, 2nd Ed., McGraw-Hill, New York, 1970, p. 119.

    Google Scholar 

  34. E.L. Eliel, Stereochemistry of Carbon Compounds, McGraw-Hill, New York, 1962, p. 244; E.L. Eliel and R.S. Ro, J. Am. Chem. Soc., 79(1957)5992; W.G. Dauben, G.J. Fonken and D.S. Noyce, ibid., 78(1956)2579.

    Google Scholar 

  35. S. Chandrasekhar, Chemisrry Education (N.Delhi), accepted for publication.

  36. W.P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-Hill, New York, 1969, p. 312.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandrasekhar, S. The principle of microscopic reversibility in organic chemistry - a critique. Res Chem Intermed 17, 173–209 (1992). https://doi.org/10.1163/156856792X00128

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856792X00128

Keywords

Navigation