Skip to main content
Log in

Isomerization of unsaturated radicals. VI. Isomerization of 3-cyclopenlenyl and pentamethylene radicals

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The 184.9 nm photochemistry 0f gaseous 3-methylcyclopentene and 3-methyl-1,4-pentadiene have been studied. Both photoexcited species decompose mainly through the primayy rupture of the C-CH3 bond. Vibrationally excited 3-cyclopenennyl and pentamethylene radicals are formed in the primayy decomposition in the former and latter systems respectively. These radicals are connected through isomerization reactions: in the presence of DI, the isomers cyclopenten,, and trans-1,3-pentadtene and/or vinylcyclopropane are formed in both systems. The quantum yields depend on the pressure and the starting monomer: cyclopentene and cyclopentadiene are the major products from the photolysis of 3-methylcyclopentene + DI mixtures and only minor quantities of the other C5H8 compounds are formed. Cyclopentadiene is the major product of the photolysis of 3-methyl-1,4-pentadiene + O2 mixtures whereas vinylcyclopropane and trans-1,3-pentadiene are the major C5 producss of the photolysis of 3-methyl-1,4-pentadiene + DI mixtures.

The geometries of 3-cyclopentenyl and of the structures at the six critical points in the torsional potential energy curve (TPEC) for rotation about the 2- and 3-C-C bonds in the open chain pentamethylene species have been optimized completely by ab initio RHF-SCF gradient methods. For the open-chain structures the bond orders, bond lengths and the free valence (primarily associated with the central carbon atom) all correspond to 1,4-pentadien-3-yl conformations. In the ground state there is a high barrier to formation of 3-cyclopentenyl from 1,4-pentadien-3-yl. The features (relative energies and torsionll barriers) of the TPEC for 1,4-pentadien-3-yl explain the ESR observations for the open chain C5H7 radical rotamers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Referesces

  1. A.B. Callear and H.K. Lee, Nature, 213(1967)693; Trans. Faradyy Soc., 64 (1968)308.

    Article  CAS  Google Scholar 

  2. N. Nakashima, N. Shimo, N. Ikeda, and K. Yoshihara, J. Chem. Phys., 81(1984)3738.

    Article  CAS  Google Scholar 

  3. G.J. Collin, Adv. Photochem., 14(1988)135 and references cited therein.

    Article  CAS  Google Scholar 

  4. W. Makulski and G.J. Collin, J. Phys. Chem., 91(1987)708.

    Article  CAS  Google Scholar 

  5. H. Deslauriers and G.J. Collin, Res. Chem. Intermed. 12(1989)13.

    Article  CAS  Google Scholar 

  6. A.B. Trenwith, J.C.S. Faraday Trans. I, 78(1982)3131.

    Article  CAS  Google Scholar 

  7. I. Maclnnes and J.C. Walton, J.C.S. Perkin Trans. II, (1985)1073 and references cited therein.

    Article  Google Scholar 

  8. H. Deslauriers, W. Makulski, and G.J. Collin, Can. J. Chem., 65(1987)708.

    Article  Google Scholar 

  9. R.A. Hively and R.E. Hinton, J. Chromatography, 6(1968)203.

    CAS  Google Scholar 

  10. J. Gawlowski, J. Niedzielski, and A. Biernzynski, Chem. Analytyczna, 15(1970)721.

    CAS  Google Scholar 

  11. Monstergauss: M.R. Peterson (Dept. Chem., U. Torono)) and R.A. Poirier (Dept. Chem., Memorial U. Newfoundland). An extensively modified version of GAUSSIAN 80 [12].

  12. Gaussian 80: J.S. Binkley, R.A. Whiteside, R. Krishnan, R. Seeger, D.J. Defrees, H.B. Schlegel, S. Topiol, L.R. Kahn, and J.A. Pople, QCPE 406.

  13. W.J. Hehre, R.F. Stewart, and J.A. Pople, J. Chem. Phys., 51(1969)2657.

    Article  CAS  Google Scholar 

  14. G.R. De Maré and D. Neisius, J. Mol. Struct. Theochem., 109(1984)103.

    Article  Google Scholar 

  15. P. Ausloos, R.E. Rebbert, and S.G. Lias, J. Photochem., 2(1974)267.

    Article  CAS  Google Scholar 

  16. Z. Diaz and R.D. Doepker, J. Phys. Chem., 81(1977)1442.

    Article  CAS  Google Scholar 

  17. G.R. De Mare, O.P. Strausz, and H.E. Gunning, Can. J. Chem., 43(1977)1442.

    Google Scholar 

  18. W. Forst, Theory of Unimolecular Reactions, Academcc Press, New York 1973, pp. 235–245.

    Google Scholar 

  19. C.W. Larson, B.S. Rabinovitch, and D.C. Tardy, J. Chem. Phys., 47(1967)4770.

    Article  Google Scholar 

  20. P.V.R. Schleyer, J.E. Williams, and K.R. Blanchard, J. Am. Chem. Soc., 92(1970)2377.

    Article  CAS  Google Scholar 

  21. a) The enthalpy of formation of 3-methylcyclopentene has not been found. That of 1-methylcyclopentene [22] has been used instead with an appropriaee correction for the location of the double bond. This correction was assumed to be equal to 2.1 kcal mol-1 which is the difference between the enthalpy of formation of 2-methyl-2-pentene and that of 4-methyl, cis-2-pentene: see R.A. Alberty and C.A. Gehring, J. Phys. Chem. Ref. Data, 14(1985)803 and D.W. Rogers, E. Crooks, and K. Dejroongruang, J. Chem. Thermod., 19(1987)1209. b) A calculated value, 18.6 kcal mol-1, for ΔHf(3-methyl-l,4pentadiene) has been used (see P. Wolkoff, J.L. Holmes, and F.P. Lossmg, Can. J. Chem., 58(1980)211).

  22. S.W. Benson, F.R. Cruickshank, D.M. Golden, G.R. Haugen, H.E. O’Neal, A.S. Rodgers, R. Shaw, and R. Walsh, Chem. Rev., 69(1969)279.

    Article  CAS  Google Scholar 

  23. K.W. Egger and S.W. Benson, J. Am. Chem. Soc, 88(1966)241.

    Article  CAS  Google Scholar 

  24. M.A. Fox, E. Gaillard, and C.-C Chen, J. Am. Chem. Soc., 109(1987)7088.

    Article  CAS  Google Scholar 

  25. D.J. Pasto, J. Am. Chem. Soc., 110(1988)8664.

    Article  Google Scholar 

  26. G.R. De Mare, NATO ASI Series C, 67(1981)371.

    Google Scholar 

  27. G.R. De Maré and M.R. Peterson, J. Mol. Struct. Theochem., 89(1982)213.

    Article  Google Scholar 

  28. G.R. De Mare, Can. J. Chem., 63(1985)1672.

    Article  Google Scholar 

  29. S.S. Shaik, P.C. Hiberty, J.-M. Lefour, and G. Ohansssian, J. Am. Chem. Soc., 109(1987)59.

    Article  Google Scholar 

  30. H.O. Villar and M. Dupuis, Chem. Phys. Letters, 142(1987)59.

    Article  CAS  Google Scholar 

  31. S. Furuyama, D.M. Golden, and S.W. Benson, Int. J. Chem. Kinet., 2(1970)93.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maré, G.R.D., Deslauriers, H. & Collin, G.J. Isomerization of unsaturated radicals. VI. Isomerization of 3-cyclopenlenyl and pentamethylene radicals. Res Chem Intermed 14, 133–159 (1990). https://doi.org/10.1163/156856790X00229

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856790X00229

Keywords

Navigation