Low-tempereture photolysis of diazoketones: the conformational isomerism of benzoylphenylmethylene and the IR spectrum of anthronylidene

  • M. Torres
  • A. Clement
  • O. P. Strausz


Low-temperature photolysis of benzoylphenyldiazomethane, 1, and diazoanthrone, 2, in the polycrystal phase resulted in the high-intensity ESR spectra of benxoylphenymethylene 1a and anthronylidene 2a, respectively. Photolyses of argon matrix-isolated 1 and 2, coupled with IR spectroscopy, have now been carried out. Photolysis of 1 yielded the IR spectrum of diphenylketene as the only IR-observable product and indicated the presence in the matrix of the two s-E, s-Z, isomers of 1. On the other hand, photolysis of 2 yielded the IR spectrum of carbene 2a as the only observable product.


Photolysis Carbene Oxadiazole Vinyl Ketone Argon Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.M. Trozzolo, Acc. Chem. Res., 1(1968)329 and references therein.CrossRefGoogle Scholar
  2. 2.
    B. Meyer, Low Temperature Spectroscopy, Elsevier, Amsterdam, 1971.Google Scholar
  3. 3.
    L. Andrews, in H.E. Hallam (Ed.), Vibrational Spectroscopy of Trappdd Species, John Wiley and Sons, London, 1978, p. 192.Google Scholar
  4. 4.
    W. Kirmse, Carbene Chemistry, 2nd ed., Academic Pres., New York, 1971; R.A. Moss and M. Jones (Eds)., Carbenes, Wiley, New York, 1973; H. Meier and K.P. Zeeler, Angew. Chem. Int. Ed., 14(1975)32; M. Torres, E.M. Lown, H.E. Gunning, and O.P. Strausz, Pure Appl. Chem., 52(1980)1623.Google Scholar
  5. 5.
    For a review see M. Torres, I. Safarik, H. Murai, and O.P. Strausz, Rev. Chem. Int., 7(1986)243.CrossRefGoogle Scholar
  6. 6.
    R.A. Hayes, T.C. Hess, R.J. McMahon, and O.L. Chapman, J. Am. Chem. Soc, 105(1983)7786; R.J. McMahon, O.L. Chapman, R.A. Hayes, T.C. Hess, and H.P. Knmmer, J. Am. Chem. Soc, 107(1985)7597.CrossRefGoogle Scholar
  7. 7.
    H. Murai, M. Torres, and O.P. Strausz, J. Am. Chem. Soc, 102(1980)104; H. Murai, I. Safarik, M. Torres, and O.P. Strausz, J. Am. Chem. Soc, 110(1988)1025.Google Scholar
  8. 8.
    P. Oevolder, P. Bourlet, C. Duprer, and O. Dessaux, Chem. Phys. Lett., 14(1972)57; H. Murai, M. Torres, and O.P. Strausz, J. Am. Chem. Soc, 102(1980)7390.CrossRefGoogle Scholar
  9. 9.
    Sh. Nadzhimutdmov, N.A. Slovokhotova, and V.A. Kargin, Russ. J. Phys. Unem., 49(1966)479.Google Scholar
  10. 10.
    R. Schulz and A. Schweig, Angew. Chem. Int. Ed., 23(1984)509.CrossRefGoogle Scholar
  11. 11.
    G. Paliani, S. Sorriso, and R. Calaliotti, J. Chem. Soc. Perkin n, (1976)707.Google Scholar
  12. 12.
    R. Bassani, F. DiFuna, and R. Curci, Spectrosc. Lett., 7(1974)531.CrossRefGoogle Scholar
  13. 13.
    T. Zellhofer, PhD Thesis, University of Frankfurt, West Germany, 1980.Google Scholar
  14. 14.
    M. Cowie and M.D. Gauthier, Can. J. Chem., 59(1981)1463.CrossRefGoogle Scholar
  15. 15.
    F. Kaplan and G.K. Meloy, J. Am. Chem. Soc, 88(1966)850.Google Scholar
  16. 16.
    R. Bartlet, M. Montagne, and P. Araud, Spectrochim. Acta, 25A(1969) 1081.Google Scholar
  17. 17.
    F. Kaplan and M.L. Mitchell, Tetrahedron Lett., (1979)759; M. Torres, J. Ribo, A. Clement, and O.P. Strausz, Can. J. Chem., 61(1983)996.Google Scholar
  18. 18.
    G. Cauquss and G. Reverdy, Tetrahedron Lett., (1967)1493.Google Scholar

Copyright information

© Springer 1990

Authors and Affiliations

  • M. Torres
    • 1
  • A. Clement
    • 1
  • O. P. Strausz
    • 1
  1. 1.Department of ChemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations