Skip to main content
Log in

New strategy for band-gap tuning in semiconductor nanocrystals

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In the last decade, the main efforts have focused on the preparation of different sized binary II–VI group semiconductor nanocrystals to obtain different color-emitting luminescence. However, the tuning of physical and chemical properties by changing the particle size could cause problems in many applications, in particular if unstable small particles are used. Recent advances have led to the exploration of tunable optical properties by changing their constituent stoichiometries in ternary alloy nanocrystals. High-quality Zn x Cd1−x Se alloy nanocrystals have been successfully prepared at high temperature by incorporating stoichiometric amounts of Zn and Se into pre-prepared CdSe nanocrystals or embryonic CdSe nuclei. With increasing Zn content, a composition-tunable emission across the whole visible spectrum has been demonstrated by a systematic blue-shift in emission wavelength. High-quality alloy Zn x Cd1−x S nanocrystals have been obtained by the conucleation and co-growth of the constituents through the reaction of a mixture of CdO- and ZnO-oleic acid complexes with sulfur at elevated temperatures. The obtained Zn x Cd1−x S alloy nanocrystals possess superior optical properties with photoluminescence quantum yields of 25–50%, especially the extremely narrow emission spectral width (fwhm=14 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Colvin, M. C. Schlamp and A. P. Alivisatos, Nature 370, 354 (1994).

    Article  CAS  Google Scholar 

  2. M. C. Schlamp, X. Peng and A. P. Alivisatos, J. Appl. Phys. 82, 5837 (1997).

    Article  CAS  Google Scholar 

  3. M. Gao, C. Lesser, S. Kirstein, H. Mohwald, A. L. Rogach and H. Weller, J. Appl. Phys. 87, 2297 (2000).

    Article  CAS  Google Scholar 

  4. N. Tessler, V. Medvedev, M. Kazes, S. H. Kan and U. Banin, Science 295, 1506 (2002).

    Article  Google Scholar 

  5. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler and M. G. Bawendi, Science 290, 314 (2000).

    Article  CAS  Google Scholar 

  6. M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski and W. Langbein, Nano Lett. 1, 309 (2001).

    Article  CAS  Google Scholar 

  7. X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan and A. M. Wu, Science 307, 538 (2005).

    Article  CAS  Google Scholar 

  8. M. P. Bruchez, M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, Science 281, 2013 (1998).

    Article  CAS  Google Scholar 

  9. W. C. W. Chan and S. Nie, Science 281, 2016 (1998).

    Article  CAS  Google Scholar 

  10. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale and M. P. Bruchez, Biotechnol. 21, 41 (2003).

    Article  CAS  Google Scholar 

  11. W. C. W. Chan, D. J. Maxwell, X. Gao, R. E. Bailey, M. Han and S. Nie, Curr. Opin. Biotechnol. 13, 40 (2002).

    Article  CAS  Google Scholar 

  12. X. Wu, H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale and M. P. Bruchez, Nature Biotechnol. 21, 41 (2003).

    Article  CAS  Google Scholar 

  13. C. B. Murray, D. J. Norris and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).

    Article  CAS  Google Scholar 

  14. X. Peng, Chem. Eur. J. 8, 334 (2002).

    Article  CAS  Google Scholar 

  15. Z. A. Peng and X. Peng, J. Am. Chem. Soc. 123, 183 (2001).

    Article  CAS  Google Scholar 

  16. L. Qu, Z. A. Peng and X. Peng, Nano Lett. 1, 333 (2001).

    Article  CAS  Google Scholar 

  17. L. Qu and X. Peng, J. Am. Chem. Soc. 124, 2049 (2002).

    Article  CAS  Google Scholar 

  18. D. Talapin, A. L. Rogach, A. Kornowski, M. Haase and H. Weller, Nano Lett. 1, 207 (2001).

    Article  CAS  Google Scholar 

  19. P. Reiss, J. Bleuse and A. Pron, Nano Lett. 2, 781 (2002).

    Article  CAS  Google Scholar 

  20. M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. 100, 468 (1996).

    Article  CAS  Google Scholar 

  21. X. Peng, M. C. Schlamp, A. V. Kadavanich and A. P. Alivisatos, J. Am. Chem. Soc. 119, 7019 (1997).

    Article  CAS  Google Scholar 

  22. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec, J. R. Heine, H. Mattoussi, R. Ober, K. F. Jensen and M. G. Bawendi, J. Phys. Chem. B 101, 9463 (1997).

    Article  CAS  Google Scholar 

  23. X. Zhong, R. Xie, Y. Zhang, T. Basche and W. Knoll, Chem. Mater. 17, 4038 (2005).

    Article  CAS  Google Scholar 

  24. A.-B. Chen and A. Sher, Semiconductor Alloys, Plenum Press, New York, NY (1996).

    Google Scholar 

  25. B. A. Korgel and H. G. Monbouquette, Langmuir 16, 3588 (2000).

    Article  CAS  Google Scholar 

  26. D. V. Petrov, B. S. Santos, G. A. L. Pereira and C. D. M. Donegá, J. Phys. Chem. B 106, 5325 (2002).

    Article  CAS  Google Scholar 

  27. M. T. Harrison, S. V. Kershaw, M. G. Burt, A. Eychmüller, H. Weller and A. L. Rogach, Mater. Sci. Eng. B 69, 355 (2000).

    Article  Google Scholar 

  28. Y. Tian, T. Newton, N. A. Kotov, D. M. Guldi and J. H. Fendler, J. Phys. Chem. 100, 8927 (1996).

    Article  CAS  Google Scholar 

  29. W. Wang, I. Germanenko and M. S. El-Shall, Chem. Mater. 14, 3028 (2002).

    Article  CAS  Google Scholar 

  30. X. Zhong, M. Han, Z. Dong, T. White and W. Knoll, J. Am. Chem. Soc. 125, 8589 (2003).

    Article  CAS  Google Scholar 

  31. X. Zhong, Z. H. Zhang, S. H. Liu, M. Y. Han and W. Knoll, J. Phys. Chem. B 108, 15552 (2004).

    Article  CAS  Google Scholar 

  32. X. Zhong, Y. Feng, W. Knoll and M. Han, J. Am. Chem. Soc. 125, 13559 (2003).

    Article  CAS  Google Scholar 

  33. X. Zhong, S. Liu, Z. Zhang, L. Li, Z. Wen and W. Knoll, J. Mater. Chem. 14, 2790 (2004).

    Article  CAS  Google Scholar 

  34. R. E. Bailey and S. Nie, J. Am. Chem. Soc. 125, 7100 (2003).

    Article  CAS  Google Scholar 

  35. L. A. Swafford, L. A. Weigand, M. J. Bowers, J. R. McBride, J. L. Rapaport, T. L. Watt, S. K. Dixit, L. C. Feldman and S. J. Rosenthal, J. Am. Chem. Soc. 128, 12299 (2006).

    Article  CAS  Google Scholar 

  36. J. P. Ge, S. Xu, J. Zhuang, X. Wang, Q. Peng and Y. D. Li, Inorg. Chem. 45, 4922 (2006).

    Article  CAS  Google Scholar 

  37. Y. C. Li, M. F. Ye, C. H. Yang, X. H. Li and Y. F. Li, Adv. Func. Mater. 15, 433 (2005).

    Article  CAS  Google Scholar 

  38. X. Peng, J. Wickham and A. P. Alivisatos, J. Am. Chem. Soc. 120, 5343 (1998).

    Article  CAS  Google Scholar 

  39. Z. A. Peng and X. Peng, J. Am. Chem. Soc. 123, 1389 (2001).

    Article  CAS  Google Scholar 

  40. X. Peng, L. Manna, W. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivisatos, Nature 404, 59 (2000).

    Article  CAS  Google Scholar 

  41. D. V. Talapin, A. L. Rogach, M. Haase and H. Weller, J. Phys. Chem. B 105, 12278 (2001).

    Article  CAS  Google Scholar 

  42. M. A. Hines and P. Guyot-Sionnest, J. Phys. Chem. B 102, 3655 (1998).

    Article  CAS  Google Scholar 

  43. S.-J. Park, S. Kim, S. Lee, Z. G. Khim, K. Char and T. Hyeon, J. Am. Chem. Soc. 122, 8581 (2000).

    Article  CAS  Google Scholar 

  44. S. Sun, C. B. Muray, D. Weller, L. Folks and A. Moser, Science 287, 1989 (2000).

    Article  CAS  Google Scholar 

  45. E. V. Shevchenko, D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase and H. Weller, J. Am. Chem. Soc. 124, 11480 (2002).

    Article  CAS  Google Scholar 

  46. D. V. Talapin, S. Haubold, A. L. Rogach, A. Kornowski, M. Haase and H. Weller, J. Phys. Chem. B 105, 2260 (2001).

    Article  CAS  Google Scholar 

  47. X. Q. Li and Y. Arakawa, Phys. Rev. B 60, 1915 (1999).

    Article  CAS  Google Scholar 

  48. W. G. J. H. M. van Sark, P. L. T. M. Fredrix, D. J. Van den Heuvel, M. A. H. Asselberg and H. C. Gerritsen, Single Mol. 1, 291 (2000).

    Article  Google Scholar 

  49. X. Michalet, F. Pinaud, T. D. Lacoste, M. Dahan, M. P. Bruchez, A. P. Alivisatos and S. Weiss. Single Mol. 4, 261 (2001).

    Article  Google Scholar 

  50. W. G. J. H. M. van Sark, P. L. T. M. Fredrix, D. J. Van den Heuvel and H. C. Gerritsen, J. Phys. Chem. B 105, 8281 (2001).

    Article  Google Scholar 

  51. S. V. Gaponenko, in: Optical Properties of Semiconductor Nanocrystals, p. 38, Cambridgie University Press, Cambridge (1998).

    Google Scholar 

  52. M. V. R. Krishna and R. A. Friesner, J. Chem. Phys. 95, 8309 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhua Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, X., Feng, Y. New strategy for band-gap tuning in semiconductor nanocrystals. Res. Chem. Intermed. 34, 287–298 (2008). https://doi.org/10.1163/156856708783623456

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856708783623456

Keywords

Navigation