Advertisement

Research on Chemical Intermediates

, Volume 33, Issue 3–5, pp 351–358 | Cite as

The effect of dosage on the photocatalytic degradation of organic pollutants

  • J. M. Doña
  • C. Garriga
  • J. Araña
  • J. Pérez
  • G. Colon
  • M. Macías
  • J. A. Navio
Article

Abstract

Heterogeneous photocatalytic degradation of many organic pollutants, such as phenol and phenol derivatives, may be optimised if the catalyst surface saturation and the appearance and accumulation of non-photocatalytically degradable intermediates is avoided. It has been shown that under certain concentration threshold the highest degradation efficiencies are achieved. Over these concentrations, degradation rates become constant owing to the limited catalyst surface. By the dosage of the contaminant, currently in an aqueous solution, the process may be optimised, thus avoiding the formation of inert intermediates which may be more toxic than the parental compound. The effect of dosage on the photocatalytic degradation of phenol and phenol derivatives, such as salicylic acid and 4-aminophenol has been studied. Comparatively notably higher efficiencies have been obtained compared to those of the high initial single dose experiments (non-dosage), for which high initial concentrations of the organics resulted in the catalysts poisoning. Degussa P-25 and its combination with 13% (w/w) activated carbon, namely AC−TiO2, have been used as catalysts. Almost complete degradations are achieved at low dosage rates (1–2 pmm/min). At higher dosage rates, different processes such as catalyst poisoning predominate, resulting in lower degradation efficiencies.

Keywords

Photocatalysis TiO2 activated carbon phenol dosage processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Auguliaro, E. Davì, L. Palmisano, M. Schiavello and A. Sclafani, Appl. Catal. 65, 101 (1990).CrossRefGoogle Scholar
  2. 2.
    D. Chen and A. K. Ray, Appl. Catal. B: Environ. 23, 143 (1999).CrossRefGoogle Scholar
  3. 3.
    J. Villaseñor, P. Reyes and G. Pecchi, Catal. Today 76, 121 (2002).CrossRefGoogle Scholar
  4. 4.
    H. Chung, W. Yizhong and T. Hongxiao, Chemosphere 41, 1205 (2000).CrossRefGoogle Scholar
  5. 5.
    J. Grzechulska and A. Waldemar-Morawski, Appl. Catal. B: Environ. 46, 415 (2003).CrossRefGoogle Scholar
  6. 6.
    G. Colón, M. C. Hidalgo and J. A. Navío, Appl. Catal. B: Environ. 45, 39 (2003).CrossRefGoogle Scholar
  7. 7.
    S. Parra J. Olivero, L. Pacheco and C. Pulgarin, Appl. Catal. B: Environ. 43, 293 (2003).CrossRefGoogle Scholar
  8. 8.
    G. Colón, M. C. Hidalgo, M. Macías, J. A. Navío and J. M. Doña, Appl. Catal. B: Environ. 43, 163 (2003).CrossRefGoogle Scholar
  9. 9.
    D. M. Alfano, D. Bahnemann, A. E. Cassano, R. Dillert and R. Goslich, Catal. Today 58, 199 (2000).CrossRefGoogle Scholar
  10. 10.
    J. Blanco Gálvez and S. Malato Rodríguez, Tecnología de Fotocatálisis Solar. Instituto de Estudios Almerienses de la Diputación de Almería, CIEMAT, Almería (1996).Google Scholar
  11. 11.
    M. Schiavello (Ed.), Heterogeneous Photocatalysis, Wiley, Chichester (1997).Google Scholar
  12. 12.
    A. Fujisima, T. N. Rao and D. A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev. 1, 1 (2000).CrossRefGoogle Scholar
  13. 13.
    A. M. Peiró, J. A. Ayllón, J. Peral and X. Doménech, Appl. Catal B: Environ. 30, 359 (2001).CrossRefGoogle Scholar
  14. 14.
    J. Peral, J. Casado and J. Doménech, J. Photochem. Photobiol. A: Chem. 44, 209 (1988).CrossRefGoogle Scholar
  15. 15.
    K. Okamoto, Y. Yamamoto, H. Tanaka and A. Itaya, Bull. Chem. Soc. Jpn. 58, 2015 (1985).CrossRefGoogle Scholar
  16. 16.
    J. A. Herrera Melián, J. M. Doña Rodríguez, A. Viera Suárez, E. Tello Rendón, C. Valdés do Campo, J. Araña Mesa and J. Pérez Peña, Water Res. 34, 3967 (2000).CrossRefGoogle Scholar
  17. 17.
    J. Araña, E. Tello Rendón, J. M. Doña Rodríguez, C. Valdés do Campo, J. A. Herrera Melián, O. González Díaz and J. Pérez Peña, Water Sci. Technol. 44, 229 (2001).Google Scholar
  18. 18.
    K. Wang, Y. Hsieh, M. Chou and C. Chang, Appl. Catal. B: Environ. 21, 1 (1999).CrossRefGoogle Scholar
  19. 19.
    E. Leyva, E. Moctezuma, M. G. Ruíz and L. Torres-Martínez, Catal. Today 40, 367 (1998).CrossRefGoogle Scholar
  20. 20.
    J. Araña, E. Tello Rendón, J. M. Doña Rodríguez, C. Valdés do Campo, J. A. Herrera Melián, O. González Díaz and J. Pérez Peña, Appl. Catal. B: Environ. 30, 1 (2001).CrossRefGoogle Scholar
  21. 21.
    J. M. Herrmann, Catal. Today 53, 115 (1999).CrossRefGoogle Scholar
  22. 22.
    J. Araña, J. M. Doña-Rodriguez, E. Tello-Rendón, C. Garriga i Cabo, O. González Díaz, J. A. Herrera Melián, J. Pérez Peña, G. Colón and J. A. Navío, Appl. Catal. B: Environ. 44, 161 (2003).CrossRefGoogle Scholar
  23. 23.
    J. Araña, J. M. Doña-Rodriguez, E. Tello-Rendón, C. Garriga i Cabo, O. González Díaz, J. A. Herrera Melián, J. Pérez Peña, G. Colón and J. A. Navío, Appl. Catal. B: Environ. 44, 153 (2003).CrossRefGoogle Scholar
  24. 24.
    N. Serpone and A. Salinaro, Pure Appl. Chem. 71, 303 (1999).CrossRefGoogle Scholar
  25. 25.
    A. Salinaro, A. V. Emeline, J. Zhao, H. Hidaka, V. K. Ryabchuk and N. Serpone, Pure Appl. Chem. 71, 321 (1999).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • J. M. Doña
    • 1
  • C. Garriga
    • 1
  • J. Araña
    • 1
  • J. Pérez
    • 1
  • G. Colon
    • 2
  • M. Macías
    • 2
  • J. A. Navio
    • 2
  1. 1.CIDIA-FEAM (Unidad Asociada al ICMSE-CSIC)Parque Científico y Tecnológico de la Universidad de Las Palmas de Gran CanariaLas PalmasSpain
  2. 2.Instituto de Ciencia de Materiales de SevillaCentro Mixto Universidad de Sevilla-CSICSevillaSpain

Personalised recommendations