Amplified fluorescence quenching and biosensor application of a poly (para-phenylene) cationic polyelectrolyte

Abstract

The quenching behavior of a water-soluble cationic poly (para-phenylene) bearing quaternized ammonium side groups (P-NEt +3 ) was studied. P-NEt +3 is efficiently quenched by sodium anthraquinone-2,6-disulfonate (AQS) and sodium 1,4,5,8-naphthalenediimide-N,N’-bis (methylsulfonate) (NDS) in aqueous solution via a photo-induced electron-transfer mechanism. Absorption spectra of the NDS/P-NEt +3 ion-pair complex indicated formation of a stable charge-transfer complex in the ground state. A large spectral shift and band broadening occurred during AQS/P-NEt +3 complex formation, which is believed to arise due to P-NEt +3 conformational changes induced by hydrophobic interactions. Finally, a protein sensor that relies on the quenching behavior of P-NEt +3 was designed based on the quencher-tether-ligand (QTL) approach. AQS tethered to biotin (AQS-E-Biotin) was used along with P-NEt +3 to sense avidin.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    O. S. Wolfbeis, M. Böhmer, A. Dürkop, J. Enderlein, M. Gruber, I. Klimant, C. Krause, J. Kürner, G. Liebsch, Z. Lin, B. Oswald and M. Wu, in: Fluorescence Spectroscopy, Imaging and Probes, R. Kraayenhof, A. J. W. G. Visser and H. C. Gerritsen (Eds), p. 241. Springer, New York, NY (2002).

    Google Scholar 

  2. 2.

    M. Mehrvar, C. Bis, J. M. Scharer, M. Moo-Young and J. H. Luong, Anal. Sci. 16, 677 (2000).

    Article  CAS  Google Scholar 

  3. 3.

    M. R. Pinto and K. S. Schanze, Synthesis 9, 1293 (2002).

    Article  Google Scholar 

  4. 4.

    T. M. Swager, Acc. Chem. Res. 31, 201 (1998).

    Article  CAS  Google Scholar 

  5. 5.

    Q. Zhou and T. M. Swager, J. Am. Chem. Soc. 117, 12593 (1995).

    Article  CAS  Google Scholar 

  6. 6.

    D. T. McQuade, A. E. Pullen and T. M. Swager, Chem. Rev. 100, 2537 (2000).

    Article  CAS  Google Scholar 

  7. 7.

    L. Chen, D. W. McBranch, H.-L. Wang, R. Helgeson, F. Wudl and D. G. Whitten Proc. Natl. Acad. Sci. USA 96, 12287 (1999).

    Article  CAS  Google Scholar 

  8. 8.

    B. S. Harrison, M. B. Ramey, J. R. Reynolds and K. S. Schanze, J. Am. Chem. Soc. 122, 8561 (2000).

    Article  CAS  Google Scholar 

  9. 9.

    D. Wang, J. Wang, D. Moses, G. C. Bazan and A. J. Heeger, Langmuir 17, 1262 (2001).

    Article  CAS  Google Scholar 

  10. 10.

    N. DiCesare, M. R. Pinto, K. S. Schanze and J. R. Lakowicz, Langmuir 18, 7785 (2002).

    Article  CAS  Google Scholar 

  11. 11.

    S. A. Kushon, K. D. Ley, K. Bradford, R. M. Jones, D. McBranch and D. Whitten, Langmuir 18, 7245 (2002).

    Article  CAS  Google Scholar 

  12. 12.

    B. S. Gaylord, A. J. Heeger and G. C. Bazan, Proc. Natl. Acad. Sci. USA 99, 10954 (2002).

    Article  CAS  Google Scholar 

  13. 13.

    B. S. Gaylord, A. J. Heeger and G. C. Bazan, J. Am. Chem. Soc. 125, 896 (2003).

    Article  CAS  Google Scholar 

  14. 14.

    L. Chen, S. Xu, D. McBranch and D. Whitten, J. Am. Chem. Soc. 122, 9302 (2000).

    Article  CAS  Google Scholar 

  15. 15.

    L. Chen, D. McBranch, R. Wang and D. Whitten, Chem. Phys. Lett. 330, 27 (2000).

    Article  CAS  Google Scholar 

  16. 16.

    R. M. Jones, T. S. Bergstedt, D. W. McBranch and D. G. Whitten, J. Am. Chem. Soc. 123, 6726 (2001).

    Article  CAS  Google Scholar 

  17. 17.

    B. S. Gaylord, S. Wang, A. J. Heeger and G. C. Bazan, Am. Chem. Soc. 123, 6417 (2001).

    Article  CAS  Google Scholar 

  18. 18.

    J. Wang, D. L. Wang, E. K. Miller, D. Moses, G. C. Bazan and A. J. Heeger, Macromolecules 33, 5153 (2000).

    Article  CAS  Google Scholar 

  19. 19.

    S. Shi and F. Wudl, Macromolecules 23, 2119 (1990).

    Article  CAS  Google Scholar 

  20. 20.

    N. M. Green, Adv. Protein Chem. 29, 85 (1975).

    Article  CAS  Google Scholar 

  21. 21.

    D. G. Whitten, D. W. McBranch, R. Jones and T. S. Bergstedt, in: PCT International Applications; QTL Biosystems, LLC, Santa Fe, NM (2001).

    Google Scholar 

  22. 22.

    C. J. Zhong, W. S. V. K Wan and L. L. Miller, Chem. Mater. 4, 1423 (1992).

    Article  CAS  Google Scholar 

  23. 23.

    P. B. Balanda, M. B. Ramey and J. R. Reynolds, Macromolecules 32, 3970 (1999).

    Article  CAS  Google Scholar 

  24. 24.

    S. Kim, J. Jackiw, E. Robinson, K. S. Schanze, J. R. Reynolds, J. Baur, M. F. Rubner and D. Boils, Macromolecules 31, 964 (1998).

    Article  CAS  Google Scholar 

  25. 25.

    G. M. Kheifets, N. V. Martyushina, T. A. Mikhailova and N. V. Khromov-Borisov, Chem. Abstr. 87, 117196 (1977).

    Google Scholar 

  26. 26.

    S. Green and M. A. Fox, J. Phys. Chem. 99, 14752 (1995).

    Article  CAS  Google Scholar 

  27. 27.

    K. Kano, T. Sato, S. Yamada and T. Ogawa, J. Phys. Chem. 87, 566 (1983).

    Article  CAS  Google Scholar 

  28. 28.

    A. D. Child and J. R. Reynolds, Macromolecules 27, 1975 (1994).

    Article  CAS  Google Scholar 

  29. 29.

    T. L. Nemzek and W. R. Ware, J. Chem. Phys 62, 477 (1975).

    Article  CAS  Google Scholar 

  30. 30.

    J. R. Lakowicz, Principles of Fluorescence, Kluwer, New York, NY (1999).

    Google Scholar 

  31. 31.

    N. J. Turro, Modern Molecular Photochemistry, Benjamin/Cummings, Menlo Park, CA (1978).

    Google Scholar 

  32. 32.

    J. Wang, D. Wang, E. K. Miller, D. Moses and A. J. Heeger, Synth. Met. 119, 591 (2001).

    Article  CAS  Google Scholar 

  33. 33.

    T. M. Bockman and J. K. Kochi, J. Am. Chem. Soc. 111, 4669 (1989).

    Article  CAS  Google Scholar 

  34. 34.

    R. A. Marcus, J. Phys. Chem. 93, 3078 (1989).

    Article  CAS  Google Scholar 

  35. 35.

    P. Chen and T. J. Meyer, Chem. Rev. 98, 1439 (1998).

    Article  CAS  Google Scholar 

  36. 36.

    I. R. Gould, D. Noukakis, L. Gomez-Jahn, J. L. Goodman and S. Farid, J. Am. Chem. Soc. 115, 4405 (1993).

    Article  CAS  Google Scholar 

  37. 37.

    C. Tan, M. R. Pinto and K. S. Schanze, Chem. Commun., 446 (2002).

  38. 38.

    M. Yan, L. J. Rothberg, E. W. Kwock and T. M. Miller, Phys. Rev. Lett. 75, 1992 (1995).

    Article  CAS  Google Scholar 

  39. 39.

    D. Wang, X. Gong, P. S. Heeger, F. Rininsland, G. C. Bazan and A. J. Heeger, Proc. Natl. Acad. Sci. USA 99, 49 (2002).

    Article  CAS  Google Scholar 

  40. 40.

    R. D. Mandella H. W. Meslar and H. B. White, Biochem. J. 175, 629 (1978).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kirk S. Schanze.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pinto, M.R., Tan, C., Ramey, M.B. et al. Amplified fluorescence quenching and biosensor application of a poly (para-phenylene) cationic polyelectrolyte. Res. Chem. Intermed. 33, 79–90 (2007). https://doi.org/10.1163/156856707779160861

Download citation

Keywords

  • Quencher-tether-ligand (QTL) approach
  • quenching
  • biosensor
  • poly(para-phenylene)
  • polyelectrolyte