Advertisement

Research on Chemical Intermediates

, Volume 33, Issue 1–2, pp 79–90 | Cite as

Amplified fluorescence quenching and biosensor application of a poly (para-phenylene) cationic polyelectrolyte

  • Mauricio R. Pinto
  • Chunyan Tan
  • Michael B. Ramey
  • John R. Reynolds
  • Troy S. Bergstedt
  • David G. Whitten
  • Kirk S. Schanze
Article

Abstract

The quenching behavior of a water-soluble cationic poly (para-phenylene) bearing quaternized ammonium side groups (P-NEt 3 + ) was studied. P-NEt 3 + is efficiently quenched by sodium anthraquinone-2,6-disulfonate (AQS) and sodium 1,4,5,8-naphthalenediimide-N,N’-bis (methylsulfonate) (NDS) in aqueous solution via a photo-induced electron-transfer mechanism. Absorption spectra of the NDS/P-NEt 3 + ion-pair complex indicated formation of a stable charge-transfer complex in the ground state. A large spectral shift and band broadening occurred during AQS/P-NEt 3 + complex formation, which is believed to arise due to P-NEt 3 + conformational changes induced by hydrophobic interactions. Finally, a protein sensor that relies on the quenching behavior of P-NEt 3 + was designed based on the quencher-tether-ligand (QTL) approach. AQS tethered to biotin (AQS-E-Biotin) was used along with P-NEt 3 + to sense avidin.

Keywords

Quencher-tether-ligand (QTL) approach quenching biosensor poly(para-phenylene) polyelectrolyte 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. S. Wolfbeis, M. Böhmer, A. Dürkop, J. Enderlein, M. Gruber, I. Klimant, C. Krause, J. Kürner, G. Liebsch, Z. Lin, B. Oswald and M. Wu, in: Fluorescence Spectroscopy, Imaging and Probes, R. Kraayenhof, A. J. W. G. Visser and H. C. Gerritsen (Eds), p. 241. Springer, New York, NY (2002).Google Scholar
  2. 2.
    M. Mehrvar, C. Bis, J. M. Scharer, M. Moo-Young and J. H. Luong, Anal. Sci. 16, 677 (2000).CrossRefGoogle Scholar
  3. 3.
    M. R. Pinto and K. S. Schanze, Synthesis 9, 1293 (2002).CrossRefGoogle Scholar
  4. 4.
    T. M. Swager, Acc. Chem. Res. 31, 201 (1998).CrossRefGoogle Scholar
  5. 5.
    Q. Zhou and T. M. Swager, J. Am. Chem. Soc. 117, 12593 (1995).CrossRefGoogle Scholar
  6. 6.
    D. T. McQuade, A. E. Pullen and T. M. Swager, Chem. Rev. 100, 2537 (2000).CrossRefGoogle Scholar
  7. 7.
    L. Chen, D. W. McBranch, H.-L. Wang, R. Helgeson, F. Wudl and D. G. Whitten Proc. Natl. Acad. Sci. USA 96, 12287 (1999).CrossRefGoogle Scholar
  8. 8.
    B. S. Harrison, M. B. Ramey, J. R. Reynolds and K. S. Schanze, J. Am. Chem. Soc. 122, 8561 (2000).CrossRefGoogle Scholar
  9. 9.
    D. Wang, J. Wang, D. Moses, G. C. Bazan and A. J. Heeger, Langmuir 17, 1262 (2001).CrossRefGoogle Scholar
  10. 10.
    N. DiCesare, M. R. Pinto, K. S. Schanze and J. R. Lakowicz, Langmuir 18, 7785 (2002).CrossRefGoogle Scholar
  11. 11.
    S. A. Kushon, K. D. Ley, K. Bradford, R. M. Jones, D. McBranch and D. Whitten, Langmuir 18, 7245 (2002).CrossRefGoogle Scholar
  12. 12.
    B. S. Gaylord, A. J. Heeger and G. C. Bazan, Proc. Natl. Acad. Sci. USA 99, 10954 (2002).CrossRefGoogle Scholar
  13. 13.
    B. S. Gaylord, A. J. Heeger and G. C. Bazan, J. Am. Chem. Soc. 125, 896 (2003).CrossRefGoogle Scholar
  14. 14.
    L. Chen, S. Xu, D. McBranch and D. Whitten, J. Am. Chem. Soc. 122, 9302 (2000).CrossRefGoogle Scholar
  15. 15.
    L. Chen, D. McBranch, R. Wang and D. Whitten, Chem. Phys. Lett. 330, 27 (2000).CrossRefGoogle Scholar
  16. 16.
    R. M. Jones, T. S. Bergstedt, D. W. McBranch and D. G. Whitten, J. Am. Chem. Soc. 123, 6726 (2001).CrossRefGoogle Scholar
  17. 17.
    B. S. Gaylord, S. Wang, A. J. Heeger and G. C. Bazan, Am. Chem. Soc. 123, 6417 (2001).CrossRefGoogle Scholar
  18. 18.
    J. Wang, D. L. Wang, E. K. Miller, D. Moses, G. C. Bazan and A. J. Heeger, Macromolecules 33, 5153 (2000).CrossRefGoogle Scholar
  19. 19.
    S. Shi and F. Wudl, Macromolecules 23, 2119 (1990).CrossRefGoogle Scholar
  20. 20.
    N. M. Green, Adv. Protein Chem. 29, 85 (1975).CrossRefGoogle Scholar
  21. 21.
    D. G. Whitten, D. W. McBranch, R. Jones and T. S. Bergstedt, in: PCT International Applications; QTL Biosystems, LLC, Santa Fe, NM (2001).Google Scholar
  22. 22.
    C. J. Zhong, W. S. V. K Wan and L. L. Miller, Chem. Mater. 4, 1423 (1992).CrossRefGoogle Scholar
  23. 23.
    P. B. Balanda, M. B. Ramey and J. R. Reynolds, Macromolecules 32, 3970 (1999).CrossRefGoogle Scholar
  24. 24.
    S. Kim, J. Jackiw, E. Robinson, K. S. Schanze, J. R. Reynolds, J. Baur, M. F. Rubner and D. Boils, Macromolecules 31, 964 (1998).CrossRefGoogle Scholar
  25. 25.
    G. M. Kheifets, N. V. Martyushina, T. A. Mikhailova and N. V. Khromov-Borisov, Chem. Abstr. 87, 117196 (1977).Google Scholar
  26. 26.
    S. Green and M. A. Fox, J. Phys. Chem. 99, 14752 (1995).CrossRefGoogle Scholar
  27. 27.
    K. Kano, T. Sato, S. Yamada and T. Ogawa, J. Phys. Chem. 87, 566 (1983).CrossRefGoogle Scholar
  28. 28.
    A. D. Child and J. R. Reynolds, Macromolecules 27, 1975 (1994).CrossRefGoogle Scholar
  29. 29.
    T. L. Nemzek and W. R. Ware, J. Chem. Phys 62, 477 (1975).CrossRefGoogle Scholar
  30. 30.
    J. R. Lakowicz, Principles of Fluorescence, Kluwer, New York, NY (1999).Google Scholar
  31. 31.
    N. J. Turro, Modern Molecular Photochemistry, Benjamin/Cummings, Menlo Park, CA (1978).Google Scholar
  32. 32.
    J. Wang, D. Wang, E. K. Miller, D. Moses and A. J. Heeger, Synth. Met. 119, 591 (2001).CrossRefGoogle Scholar
  33. 33.
    T. M. Bockman and J. K. Kochi, J. Am. Chem. Soc. 111, 4669 (1989).CrossRefGoogle Scholar
  34. 34.
    R. A. Marcus, J. Phys. Chem. 93, 3078 (1989).CrossRefGoogle Scholar
  35. 35.
    P. Chen and T. J. Meyer, Chem. Rev. 98, 1439 (1998).CrossRefGoogle Scholar
  36. 36.
    I. R. Gould, D. Noukakis, L. Gomez-Jahn, J. L. Goodman and S. Farid, J. Am. Chem. Soc. 115, 4405 (1993).CrossRefGoogle Scholar
  37. 37.
    C. Tan, M. R. Pinto and K. S. Schanze, Chem. Commun., 446 (2002).Google Scholar
  38. 38.
    M. Yan, L. J. Rothberg, E. W. Kwock and T. M. Miller, Phys. Rev. Lett. 75, 1992 (1995).CrossRefGoogle Scholar
  39. 39.
    D. Wang, X. Gong, P. S. Heeger, F. Rininsland, G. C. Bazan and A. J. Heeger, Proc. Natl. Acad. Sci. USA 99, 49 (2002).CrossRefGoogle Scholar
  40. 40.
    R. D. Mandella H. W. Meslar and H. B. White, Biochem. J. 175, 629 (1978).Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Mauricio R. Pinto
    • 1
  • Chunyan Tan
    • 1
  • Michael B. Ramey
    • 1
  • John R. Reynolds
    • 1
  • Troy S. Bergstedt
    • 2
  • David G. Whitten
    • 2
  • Kirk S. Schanze
    • 1
  1. 1.Department of ChemistryUniversity of FloridaGainesvilleUSA
  2. 2.QTL BiosystemsLLCSanta FeUSA

Personalised recommendations