Skip to main content
Log in

Ionic strength and solvent control over the physical structure, electronic properties and superquenching of conjugated polyelectrolytes

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this paper, we investigate the photophysical properties of the conjugated poly electrolyte poly(2-methoxy-5-propyloxy sulfonate phenylene vinylene) (MPS-PPV), dissolved in both water and DMSO as a function of the solution ionic strength. Dynamic light scattering indicates that MPS-PPV chains exist in a highly agglomerated conformation in both solvents, and that the size of the agglomerates depends on both the ionic strength and the charge of the counter-ion. Even though the degree of agglomeration is similar in the two solvents, we find that the fluorescence quantum yield of MPS-PPV in DMSO is nearly 100-times greater than that in water. Moreover, intensity-dependent femtosecond pump-probe experiments show that there is a significant degree of exciton-exciton annihilation in water but not in DMSO, suggesting that the MPS-PPV chromophores interact to form interchain electronic species that quench the emission in water. Given that the emission quenching properties depend sensitively on the chain conformation and degree of chromophore contact, we also explore the superquenching may be either enhanced or diminished in either of the solvents via addition of simple salts, and we present a molecular picture to rationalize how the conformational properties of conjugated polyelectrolytes can be tuned to enhance their emissive behavior for sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J.-L. Brédas, M. Löglund and W. R. Salaneck, Nature 397, 121 (1999).

    Article  CAS  Google Scholar 

  2. A. Kraft, A. C. Gramisdale and A. B. Holmes, Angew. Chem. Int. Edn. Engl. 37, 402 (1998).

    Article  Google Scholar 

  3. A. J. Heeger, J. Phys. Chem. B 105, 8475 (2001).

    Article  CAS  Google Scholar 

  4. G. Gustafsson, Y. Cao, G. M. Treacy, F. Flavetter, N. Colinari and A. J. Heeger, Nature 357, 477 (1992).

    Article  CAS  Google Scholar 

  5. C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, Adv. Funct. Mater. 11, 15 (2001).

    Article  CAS  Google Scholar 

  6. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature 347, 539 (1990).

    Article  CAS  Google Scholar 

  7. T.-Q. Nguyen, I. B. Martini, J. Liu and B. J. Schwartz, J. Phys. Chem. B 104, 237 (2000).

    Article  CAS  Google Scholar 

  8. T.-Q. Nguyen, V. Doan and B. J. Schwartz, J. Chem. Phys. 110, 4068 (1999).

    Article  CAS  Google Scholar 

  9. T.-Q. Nguyen, R. C. Kwong, M. E. Thompson and B. J. Schwartz, Appl. Phys. Lett. 76, 2454 (2000).

    Article  CAS  Google Scholar 

  10. T.-Q. Nguyen, J. Wu, V. Doan, B. J. Schwartz and S. H. Tolbert, Science 288, 652 (2000).

    Article  CAS  Google Scholar 

  11. T.-Q. Nguyen, R. Y. Yee and B. J. Schwartz, J. Photochem. Photobiol. A 144, 21 (2001).

    Article  CAS  Google Scholar 

  12. T.-Q. Nguyen and B. J. Schwartz, J. Chem. Phys. 116, 8198 (2002).

    Article  CAS  Google Scholar 

  13. R. D. Schaller, J. C. Johnson, L. H. Haber, R. J. Saykally, J. Vieceli, I. Benjamin, T.-Q. Nguyen and B. J. Schwartz, J. Phys. Chem. B 106, 9496 (2002).

    Article  CAS  Google Scholar 

  14. R. Jakubiak, C. J. Collison, C. W. Wai, L. J. Rothberg and B. R. Hsieh, J. Phys. Chem. A 103, 2394 (1999).

    Article  CAS  Google Scholar 

  15. M. Yan, L. J. Rothberg, F. Papadimitrakopoulos, M. E. Galvin and T. M. Miller, Phys. Rev. Lett. 73, 744 (1994).

    Article  CAS  Google Scholar 

  16. M. Yan, L. J. Rothberg, E. W. Kwock and T. M. Miller, Phys. Rev. Lett. 75, 1992 (1995).

    Article  CAS  Google Scholar 

  17. T. G. Bjorklund, S.-H. Lim and C. J. Bardeen, J. Phys. Chem. B 105, 11970 (2001).

    Article  CAS  Google Scholar 

  18. S.-H. Lim, T. G. Bjorklund and C. J. Bardeen, J. Chem. Phys. 118, 4297 (2003).

    Article  CAS  Google Scholar 

  19. B. J. Schwartz, Annu. Rev. Phys. Chem. 54, 141 (2003).

    Article  CAS  Google Scholar 

  20. S. A. Jenekhe and J. A. Osaheni, Science 265, 765 (1994).

    Article  CAS  Google Scholar 

  21. I. D. W. Samuel, G. Rumbles, C. J. Collison, S. C. Moratti and A. B. Holmes, Chem. Phys. 227, 75 (1998).

    Article  CAS  Google Scholar 

  22. J. W. Blatchford, S. W. Jessen, L.-B. Lin, T. L. Gustafson, D.-K. Fu, H.-L. Wang, T. M. Swager, A. G. MacDiaramid and A. J. Epstein, Phys. Rev. B 54, 9180 (1996).

    Article  CAS  Google Scholar 

  23. R. Chang, J. H. Hsu, W. S. Fann, J. Yu, S. H. Lin, Y. Z. Lee and S. A. Chen, Chem. Phys. Lett. 317, 153 (2000).

    Article  CAS  Google Scholar 

  24. F. Oosawa, Polyelectrolytes Marcel Dekker, New York, NY (1971).

    Google Scholar 

  25. Y. Zhang, J. F. Douglas, B. D. Ermi and E. J. Amis, J. Chem. Phys. 114, 3299 (2001).

    Article  CAS  Google Scholar 

  26. M. Sedlák, Langmuir 15, 4045 (1999).

    Article  Google Scholar 

  27. E. T. Hanson, R. Borsali and R. Pecora, Marcomolecules 34, 2208 (2001).

    Article  CAS  Google Scholar 

  28. R. Borsali, H. Nguyen and R. Pecora, Macromolecules 31, 1548 (1998).

    Article  CAS  Google Scholar 

  29. S. Shi and F. Wudl, Macromolecules 21, 19 (1990).

    Google Scholar 

  30. B. S. Gaylord, S. Wang, A. J. Heeger and G. C. Bazan, J. Am. Chem. Soc. 123, 6417 (2001).

    Article  CAS  Google Scholar 

  31. M. R. Pinto and K. S. Schanze, Synthesis 9, 1293 (2002).

    Article  Google Scholar 

  32. C. Tan, M. R. Pinto and K. S. Schanze, Chem. Commun., 446 (2002).

  33. M. R. Pinto, B. M. Kristal and K. S. Schanze, Langmuir 19, 6523 (2003).

    Article  CAS  Google Scholar 

  34. J.-S. Yang and T. M. Swager, J. Am. Chem. Soc. 120, 5231 (1998).

    Google Scholar 

  35. J.-S. Yang and T. M. Swager, J. Am. Chem. Soc. 120, 11864 (1998).

    Article  CAS  Google Scholar 

  36. D. T. McQuade, A. E. Pullen and T. M. Swager, Chem. Rev. 100, 2537 (2000).

    Article  CAS  Google Scholar 

  37. L. Chen, D. W. McBranch, H.-L. Wang, R. Helgeson, F. Wudl and D. G. Whitten, Proc. Natl. Acad. Sci. USA 96, 12287 (1999).

    Article  CAS  Google Scholar 

  38. L. Chen, S. Xu, D. McBranch and D. Whitten, J. Am. Chem. Soc. 122, 9302 (2000).

    Article  CAS  Google Scholar 

  39. C. Fan, K. W. Plaxco and A. J. Heeger, J. Am. Chem. Soc. 124, 5642 (2002).

    Article  CAS  Google Scholar 

  40. D. Wang, J. Wang, D. Moses, G. Bazan, A. J. Heeger, J.-H. Park and Y.-W. Park, Synth. Met. 119, 587 (2001).

    Article  CAS  Google Scholar 

  41. N. DiCesare, M. R. Pinto, K. S. Schanze and J. R. Lakowicz, Langmuir 18, 7785 (2002).

    Article  CAS  Google Scholar 

  42. D. Wang, J. Lal, D. Moses, G. Bazan and A. J. Heeger, Chem. Phys. Lett. 348, 411 (2001).

    Article  CAS  Google Scholar 

  43. L. Chen, D. MoBranch, R. Wang and D. Whitten, Chem. Phys. Lett. 330, 27 (2000).

    Article  CAS  Google Scholar 

  44. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd edn. Kluwer Academic/Plenum, New York, NY (1999).

    Google Scholar 

  45. I. B. Martini, A. D. Smith and B. J. Schwartz, Phys. Rev. B 69, 35205 (2004).

    Article  Google Scholar 

  46. C. L. Gettinger, A. J. Heeger, J. M. Drake and D. J. Pine, J. Chem. Phys. 101, 1673 (1994).

    Article  CAS  Google Scholar 

  47. R. G. Kepler, V. S. Valencia, S. J. Jabos and J. J. McNamara, Synth. Met. 78, 227 (1996).

    Article  CAS  Google Scholar 

  48. B. Kraabel, V. I. Klimov, R. Kohlman, S. Xu, H.-L. Wang and D. W. McBranch, Phys. Rev. B 61, 8501 (2000).

    Article  CAS  Google Scholar 

  49. I. Borukhov, R. F. Bruinsma, W. M. Gelbart and A. J. Liu, Phys. Rev. Lett. 86, 2182 (2001).

    Article  CAS  Google Scholar 

  50. I. Borukhov, K.-C. Lee, R. F. Bruinsma, W. M. Gelbart, A. J. Liu and M. J. Stevens, J. Chem. Phys. 117, 462 (2002).

    Article  CAS  Google Scholar 

  51. J. Wang, D. Wang, D. Moses and A. J. Heeger, J. Appl. Polym. Sci. 82, 2553 (2001).

    Article  CAS  Google Scholar 

  52. N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Science 258, 1474 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. Schwartz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, A.D., Shen, C.KF., Roberts, S.T. et al. Ionic strength and solvent control over the physical structure, electronic properties and superquenching of conjugated polyelectrolytes. Res. Chem. Intermed. 33, 125–142 (2007). https://doi.org/10.1163/156856707779160762

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856707779160762

Keywords

Navigation