Skip to main content
Log in

Solvent effect is not significant for the speed of a radical clock

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The UQCISD(T)/6-31g(d)//UB3LYP/6-31g(d) method and PCM solvation model were used to study the solvent effects on radical clock reactions. The solvents included cyclohexane, benzene, tetrahydrofuran, methylene chloride, acetone, methanol, acetonitrile, dimethylsulfoxide, nitromethane and water. We found very small solvent effects on the rearrangement activation free energy of cyclobutylmethyl and 1-hexen-6-yl radicals. Therefore, it is valid to use a calibrated radical clock in an unclear reaction medium because the speed of the radical clock should not change significantly by the solvent effect. In addition, we separated the solvent effects on radical rearrangement into three components, electrostatic, cavitation and dispersion/repulsion. We discussed the contribution of each component in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. D. Griller and K. U. Ingold, Acc. Chem. Res. 13, 317 (1980).

    Google Scholar 

  2. N. Martin, Tetrahedron 49, 1151 (1993).

    Google Scholar 

  3. J. Chen, C. Xia, J. Xin, J. Cui and S. Li, Progr. Chem. 13, 376 (2001).

    Google Scholar 

  4. J. C. Walton, J. Chem. Soc. Perkin Trans 2, 173 (1989).

    Article  Google Scholar 

  5. C. Chatgilialoglu, K. U. Ingold and J. C. Scaiano, J. Am. Chem. Soc. 103, 7739 (1981).

    Google Scholar 

  6. R. Leardini, M. Lucarini, G. F. Pedulli and L. Valgimigli, J. Org. Chem. 64, 3726 (1999).

    Article  Google Scholar 

  7. P. Franchi, M. Lucarini, G. F. Pedulli, L. Valgimigli and B. Lunelli, J. Am. Chem. Soc. 121, 507 (1999).

    Google Scholar 

  8. A. Guijarro, D. M. Rosenberg and R. D. Rieke, J. Am. Chem. Soc. 121, 4155 (1999).

    Article  Google Scholar 

  9. J. H. Horner and M. Newcomb, J. Am. Chem. Soc. 123, 4364 (2001).

    PubMed  Google Scholar 

  10. J. H. Horner, E. Taxil and M. Newcomb, J. Am. Chem. Soc. 124, 5402 (2002).

    Article  PubMed  Google Scholar 

  11. T. Clark, J. Chem. Soc. Chem. Commun., 1774 (1986).

  12. A. H. C. Horn and T. Clark, J. Am. Chem. Soc. 125, 2809 (2003).

    Article  PubMed  Google Scholar 

  13. B. F. Yates, W. J. Bouma, J. K. MacLeod and L. Radom, J. Chem. Soc. Chem. Commun., 204 (1987).

  14. C. J. Emanuel, J. H. Horner and M. Newcomb, J. Phys. Org. Chem. 13, 688 (2000).

    Article  Google Scholar 

  15. A. L. Beckwith and P. J. Duggan, J. Am. Chem. Soc. 118, 12838 (1996).

    Google Scholar 

  16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M.W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian 98, Revision A.7.Gaussian, Pittsburgh, PA (1998).

    Google Scholar 

  17. Y.-Y. Chuang, E. L. Coitino and D. G. Truhlar, J. Phys. Chem. A 104, 446 (2000).

    Article  Google Scholar 

  18. F. Wu and R. W. Carr, J. Phys. Chem. A 106, 5832 (2002).

    Article  Google Scholar 

  19. G.-X. Liu, Y.-H. Ding, Z.-S. Li, X.-R. Huang and C.-C. Sun, Chem. J. Chin. Univ. 23, 1147 (2002).

    Google Scholar 

  20. Y.-Q. Ji, W.-L. Feng, Z.-F. Xu, M. Lei and M.-R. Hao, M., Acta Chim. Sin. 60, 1167 (2002).

    Google Scholar 

  21. Y.-B. Sun, Z.-S. Li, X.-R. Huang and C.-C. Sun, Chem. J. Chin. Univ. 23, 1542 (2002).

    Google Scholar 

  22. Y.-B. Sun, D. Wu, Z.-S. Li, X.-R. Huang and C.-C. Sun, Chem. J. Chin. Univ. 23, 1727 (2002).

    Google Scholar 

  23. H.-T. Yu, Y.-J. Chi, H.-G. Fu, Z.-S. Li and J.-Z. Sun, Chin. J. Chem. 21, 244 (2003).

    Google Scholar 

  24. X. Zhang, Z. Xu, Y. Ji, W. Feng and M. Lei, Acta Phys.-Chim. Sin. 16, 94 (2003).

    Google Scholar 

  25. Q. Fu, L.-L. Chen, X.-M. Pan, Z.-S. Li and J.-Z. Sun, Chem. J. Chin.Univ. 24, 1059 (2003).

    Google Scholar 

  26. L.-C. Li, A.-M. Tian and M.-H. Xu, Acta Chim. Sin. 61, 1256 (2003).

    Google Scholar 

  27. L.-C. Li, Q. Zou and A.-M. Tian, Acta Chim. Sin. 61, 1524 (2003).

    Google Scholar 

  28. Y. Sun, Y.-B. Sun, X.-R. Huang and C.-C. Sun, Chem. J. Chin.Univ. 24, 2027 (2003).

    Google Scholar 

  29. Z.-G.Wei, X.-R. Huang, Y.-B. Sun and C.-C. Sun, Chem. J. Chin.Univ. 242224 (2003).

    Google Scholar 

  30. J. Tomasi and M. Persico, Chem. Rev. 94, 2027 (1994).

    Google Scholar 

  31. V. Barone, M. Cossi and J. Tomasi, J. Chem. Phys. 107, 3210 (1997).

    Article  Google Scholar 

  32. B. Honig and A. Nicholls, Science 268, 1144 (1995).

    PubMed  Google Scholar 

  33. Z.-W.Wang, G.-Z. Li, Z.-Z. Yi, D.-R. Guan and A.-J. Lou, Acta Chim. Sin. 60, 795 (2002).

    Google Scholar 

  34. T.-J. Hou, L.-L. Zhu, L.-R. Chen and X.-J. Xu, Acta Chim. Sin. 60, 1023 (2002).

    Google Scholar 

  35. X. Ma, C. Li, B. Lu, W. Chen, C. Wang and X. Xu, Chin. Sin. Bull. 47, 464 (2002).

    Google Scholar 

  36. W. Zhang, T.-J. Hou, Y.-B. Qiao and X.-J. Xu, Acta Phys.-Chim. Sin. 19, 289 (2003).

    Google Scholar 

  37. R. A. Pierotti, Chem. Rev. 76, 717 (1976).

    Google Scholar 

  38. J. Caillet and P. Claverie, Acta Crystallogr. B 34, 3266 (1978).

    Google Scholar 

  39. F. Daniels and R. A. Alberty, Physical Chemistry, 4th edn. Wiley, New York, NY (1995).

    Google Scholar 

  40. S. D. Wetmore, D. M. Smith and L. Radom, J. Am. Chem. Soc. 123, 8678 (2001).

    Google Scholar 

  41. H.-Y. Wang, Q. Zhang, H. Chen, R.-B. Huang and L.-S. Zheng, Chem. J. Chin. Univ. 22, 607 (2001).

    Google Scholar 

  42. H.-Y. Li, W.-B. Feng, Y.-Q. Ji and Z.-F. Xu, Acta Chim. Sin. 59, 1413 (2001).

    Google Scholar 

  43. H.-Y. Li, W.-L. Feng, Y.-Q. Ji, Z.-F. Xu and M. Lei, Acta Phys.-Chim. Sin. 18, 446 (2002).

    Google Scholar 

  44. Y.-Q. Ji, W.-L. Feng and Z.-F. Xu, Chem. J. Chin. Univ. 23, 884 (2002).

    Google Scholar 

  45. Y.-Q. Ji, W.-L.Feng, M.-R. Hao and H.-Y. Li, Acta Phys.-Chim. Sin. 18, 721 (2002).

    Google Scholar 

  46. S. Karady, J. M. Cummins, J. J. Dannenberg, E. del Rio, P. G. Dormer, B. F. Marcune, R. A. Reamer and T. L. Sordo, Org. Lett. 5, 1175 (2003).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, Y., Li, RQ., Liu, L. et al. Solvent effect is not significant for the speed of a radical clock. Research on Chemical Intermediates 30, 279–286 (2004). https://doi.org/10.1163/1568567041257616

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1163/1568567041257616

Navigation