Skip to main content
Log in

Resonance-stabilized phenoxy-like radicals formed by NO-mediated mono-nitration of coumarins containing a hydroxy group

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Stable aminoxyls and an iminoxyl were observed by spin trapping and EPR techniques during the nitration of coumarins containing a hydroxy group by nitric oxide. The trapped free radicals are deduced to be the resonance stabilized phenoxy-like radicals. The mechanisms for the nitrations are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. J. H. Ridd, Acc. Chem. Res. 4, 248 (1971).

    Google Scholar 

  2. H.W. Gibbs, L. Main, R. B. Moodie and K. Schofield, J. Chem. Soc. Perkin Trans. 2, 848 (1981).

    Article  Google Scholar 

  3. D. Gaude, R. Le Goaller and J. L. Pierre, Synth. Commun. 16, 63 (1986).

    Google Scholar 

  4. M. J. Thompson and P. J. Zeegers, Tetrahedron 46, 2661 (1990).

    Article  Google Scholar 

  5. C. L. Perrin, J. Am. Chem. Soc. 99, 5516 (1977).

    Google Scholar 

  6. S. Sankararaman, W. A. Haney and J. K. Kochi, J. Am. Chem. Soc. 109, 5235 (1987).

    Google Scholar 

  7. A. H. Clemens, J. H. Ridd and J. P. B. Sandall, J. Chem. Soc. Chem. Commun., 343 (1983).

  8. B. K. Bandlish and H. J. Shine, J. Org. Chem. 42, 561 (1977).

    Google Scholar 

  9. W. K. Musher, T. L. Wolford and P. B. Roush, J. Am. Chem. Soc. 100, 6416 (1978).

    Google Scholar 

  10. V. G. Koshechko, A. N. Inozemtsev and V. D. Pokhodenko, J. Org. Chem. USSR 52, 1877 (1982).

    Google Scholar 

  11. A. S. Morkovnik, J. Gen. Chem. USSR 18, 79 (1982).

    Google Scholar 

  12. T. Mori and H. Suzuki, Synlett, 383 (1995).

  13. H. Pervez, S. O. Onyiriuka, L. Rees, J. R. Rooney and C. J. Sucking, Tetrahedron 44, 4555 (1988).

    Article  Google Scholar 

  14. E. Bosch and J. K. Kochi, J. Org. Chem. 59, 3314 (1994).

    Google Scholar 

  15. M. P. Hartshorn, J. M. Readman, W. T. Robinson, J. Vaughan and A. R. Whyte, Austr. J. Chem. 38, 1693 (1985).

    Google Scholar 

  16. H. Ohi and T. J. McDonough, Mokuzai Gakkaishi 38, 570 (1992).

    Google Scholar 

  17. L. Eberson and F. Randner, Acta Chem. Scand. B 38, 861 (1984).

    Google Scholar 

  18. B. D. Beake, J. Constantine and R. B. Moodie, J. Chem. Soc. Perkin Trans.2, 335 (1994).

  19. J. L. Riebsomer, Chem. Rev. 36, 157 (1945).

    Google Scholar 

  20. G. Brunton, H. W. Cruse, K. M. Riches and A. Whittle, Tetrahedron Lett. 20, 1093 (1979).

    Google Scholar 

  21. A. Fischer and N. Mathivanan, Tetrahedron Lett. 29, 1869 (1988).

    Article  Google Scholar 

  22. R. G. Coombes, P. Hadjigeorgiou, D. G. J. Jensen and D. L. Morris, in: Nitration: Recent Laboratory and Industrial Development, L. F. Albright, R. V. C. Carr and R. J. Schmitt (Eds), ACS Symposium Series 623, Chapter 3. American Chemical Society, Washington, DC (1996).

    Google Scholar 

  23. R. Rathore, E. Bosch and J. K. Kochi, Tetrahedron 50, 6727 (1994).

    Google Scholar 

  24. J. J. Bozel and J. O. Hoberg, Tetrahedron Lett. 39, 2261 (1998).

    Google Scholar 

  25. R. G. Coombes, A. W. Diggle and S. P. Kempsell, Tetrahedron Lett. 34, 8557 (1993).

    Google Scholar 

  26. M. L. de La Breteche, C. Servy, M. Lenfant and C. Ducrocq, Tetrahedron Lett. 35, 7231 (1994).

    Article  Google Scholar 

  27. S. Yenes and A. Messeguer, Tetrahedron 55, 14111 (1999).

    Google Scholar 

  28. N. Ganguly, A. K. Sukai and S. De, Synth. Commun. 31, 301 (2001).

    Google Scholar 

  29. D. J. Walton, C. J. Campbell, P. G. Richards and J. Heptinstall, Electrochim. Acta 42, 3499 (1997).

    Google Scholar 

  30. J. M. Mellor, S. Mittoo, R. Parkes and R. W. Millar, Tetrahedron 56, 8019 (2000).

    Google Scholar 

  31. T. Esakkidurai and K. Pitchumani, J. Mol. Catal. A: Chem. 185, 305 (2002).

    Google Scholar 

  32. S. Samajdar, F. F. Becker and B. K. Banik, Tetrahedron Lett. 41, 8017 (2000).

    Google Scholar 

  33. J. A. R. Rodrigues, A. P. de Oliveira Filho, P. J. S. Moran and R. Custódio, Tetrahedron 55, 6733 (1999).

    Google Scholar 

  34. L. D. Lei, D. S. Yang, Z. Q. Liu and L. M. Wu, Synth. Commun. 34, 965 (2004).

    Google Scholar 

  35. S. Moncada, R. M. Palmer and E. A. Higgs, Pharmacol. Rev. 43, 109 (1991).

    Google Scholar 

  36. H. J. Galla, Angew. Chem. Int. Ed. Engl. 32, 378 (1993).

    Google Scholar 

  37. X. Q. Zhu, M. Xian, K. Wang and J. P. Cheng, J. Org. Chem., 4187 (1999).

  38. A. L. Wilcox, E. G. Janzen, J. Chem. Soc. Chem. Commun., 1377 (1993).

  39. J. I. Degraw and P. Tsakotellis, J. Chem. Eng. Data 14, 509 (1969).

    Google Scholar 

  40. X. F. Ren, X. C. Chen, K. Peng, X. G. Xie, Y. M. Xia and X. F. Pan, Tetrahedron: Asymmetry 13, 1799 (2002).

    Google Scholar 

  41. C. S. John, J. Org. Chem. 36, 3055 (1971).

    Google Scholar 

  42. W. L. F. Armarego and D. D. Perrin, Purification of Laboratory Chemials. Butterworth-Heinemann, Oxford (1997).

    Google Scholar 

  43. J. Jin, L. M. Wu and Z. Y. Zhang, Magn. Reson. Chem. 40, 284 (2002).

    Article  Google Scholar 

  44. J. S. B. Park and J. C. Walton, J. Chem. Soc. Perkin Trans. 2, 2579 (1997).

    Article  Google Scholar 

  45. S. F. Nelsen, in: Free Radicals, Volume II, J. K. Kochi (Ed.), p. 562. Wiley, New York, NY (1973).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lei, LD., Wang, F., Yang, DS. et al. Resonance-stabilized phenoxy-like radicals formed by NO-mediated mono-nitration of coumarins containing a hydroxy group. Research on Chemical Intermediates 30, 269–278 (2004). https://doi.org/10.1163/1568567041257580

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1163/1568567041257580

Navigation