Skip to main content
Log in

The antioxidant reactivity of sorbitylfurfural towards potential harmful radicals, studied by radiation chemistry techniques

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Ionising radiations, employed in a broad range of dose-rate, together with a complex non-linear computation of reaction mechanisms, allow the determination of boundary values of rate constants concerning sorbitylfurfural (SF) reactivity towards a wide series of oxidant and/or virtually harmful radicals. SF reacts with some radicals (H, SO4 , CO3 , Br2 , CH3 ·), produced with both pulse and stationary radiolysis in neutral aqueous solution, having electrophilic and/or oxidative behaviour. The rate constants range from diffusional (k = (7–9 ) × 109 M-1 s-1) to relatively low values (k = 2 × 105 M-1 s-1). The possibility to observe these reactions, by means of radiolytical techniques, is heavily influenced by dose-rate. A relation between the radical E NHE 0 and their reactivity with SF is hinted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. S. S. Emmi, M. D'Angelantonio, G. Poggi, M. Russo, G. Beggiato and B. Larsen, J. Phys. Chem. A 106, 4598 (2002).

    Article  Google Scholar 

  2. M. D'Angelantonio, S. S. Emmi, G. Poggi and G. Beggiato, J. Phys. Chem. A 103, 858 (1999).

    Article  Google Scholar 

  3. N. K. Kochetkov, L. I. Kubrjashov and M. A. Chlenov, Radiation Chemistry of Carbohydrates.Pergamon, New York, NY (1979).

    Google Scholar 

  4. C. von Sonntag, Adv. Carbohydr. Chem. Biochem. 37, 7 (1980).

    Google Scholar 

  5. G. V. Buxton and Q. G. Mulazzani, in: Electron Transfer in Chemistry, V. Balzani (Ed.), p. 503. Wiley-VCH, Weinheim (2001).

    Google Scholar 

  6. J. W. T. Spinks and R. J. Woods (Eds), An Introduction to Radiation Chemistry, 3rd edn. Wiley, New York, NY (1990).

    Google Scholar 

  7. G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, J. Phys. Chem. Ref. Data 17, 513 (1988).

    Google Scholar 

  8. P. Zanoli, G. Baggio and R. Poggioli, Agents Actions 12, 4 (1982).

    Google Scholar 

  9. A. Garzia and P. Zanoli, Riv. Farmacol. Ter. XII, 153 (1981).

    Google Scholar 

  10. S. Bader, L. Carinelli, T. Cavalletti, A. L. Giuliani and S. Traniello, Int. J. Cosmet. Sci. 12, 1 (1990).

    Google Scholar 

  11. G. Scott, Chem. Br., 648 (1985).

  12. A. Hutton, G. Roffi and A. Martelli, Quad. Area Ric. Emilia-Romagna 5, 67 (1974).

    Google Scholar 

  13. S. S. Emmi, M. D'Angelantonio, G. Poggi, G. Beggiato, N. Camaioni, A. Geri, A. Martelli, D. Pietropaolo and G. Zotti, Res. Chem. Intermed. 24, 1 (1998).

    Google Scholar 

  14. FACSIMILE for Windows V. 3.0.3. AEA Technology, Didcot (2000).

  15. Q. G. Mulazzani, M. D'Angelantonio, M. Venturi, M. Z. Hoffman and M. A. J. Rodgers, J. Phys. Chem 90, 5347 (1986).

    Google Scholar 

  16. G. Czapski, J. Holman and B. H. J. Bielski, J. Am. Chem. Soc. 116, 11465 (1994).

    Google Scholar 

  17. P.-Y. Jiang, Y. Katsumura, R. Nagaishi, M. Domae, K. Ishikawa, K. Ishigure and Y. Yoshida, J. Chem. Soc. Faraday Trans. 88, 1653 (1992).

    Article  Google Scholar 

  18. M. D'Angelantonio, M. Venturi and Q. G. Mulazzani, Radiat. Phys. Chem. 32, 319 (1988).

    Google Scholar 

  19. T. Logager and K. Sehested, J. Phys. Chem. 97, 6664 (1993).

    Google Scholar 

  20. Y.-N. Lee and S. E. Schwartz, J. Phys. Chem 85, 840(1981).

    Google Scholar 

  21. G. S. Nahor, J. Phys. Chem. 92, 4359 (1988).

    Google Scholar 

  22. K. H. Schmidt, P. Han and D. M. Bartels, J. Phys. Chem. 99, 10530 (1995).

    Google Scholar 

  23. B. Hickel, J. Phys. Chem. 79, 1054 (1975).

    Google Scholar 

  24. J. Rabani, W. A. Mulac and M. S. Matheson, J. Phys. Chem. 81, 99 (1977).

    Google Scholar 

  25. M. Simic, P. Neta and E. Hayon, J. Phys. Chem. 73, 3794 (1969).

    Google Scholar 

  26. L. V. Shastri, L. J. Mittal and J. P. Mittal, Radiat. Phys. Chem. 28, 359 (1986).

    Google Scholar 

  27. S. S. Emmi, G. Beggiato and G. Casalbore-Miceli, Radiat. Phys. Chem. 33, 29 (1989).

    Google Scholar 

  28. B. H. J. Bielski, D. E. Cabelli, R. L. Arudi and A. B. Ross, J. Phys. Chem. Ref. Data 14, 1041 (1985).

    Google Scholar 

  29. A. Sauer, H. Cohen and D. Meyerstein, Inorg. Chem. 27, 4578 (1988).

    Google Scholar 

  30. A. I. Nikolaev, R. L. Safiullin, R. L. Enikeeva and V. D. Komissarov, Khim. Fiz. 11, 69 (1992).

    Google Scholar 

  31. J. Rabani, D. Klug-Roth and A. Henglein, J. Phys. Chem. 78, 2089 (1974).

    Google Scholar 

  32. E. Bothe and D. Schulte-Frohlinde, Z. Naturforsch. 33B, 786 (1978).

    Google Scholar 

  33. B. Maillard, K. U. Ingold and J. C. Scaiano, J. Am. Chem. Soc. 105, 5095 (1983).

    Google Scholar 

  34. Y. Ilan, J. Rabani and A. Henglein, J. Phys. Chem. 80, 1558 (1976).

    Google Scholar 

  35. J. Moening, D. Bahnemann and K. D. Asmus, Chem.-Biol. Interact. 47, 15 (1983).

    Google Scholar 

  36. X. Shen, J. Lind, T. E. Eriksen and G. Merenyi, J. Phys. Chem. 93, 553 (1989).

    Google Scholar 

  37. Origin®, 6.1 v6.1052 (B232). OriginLab, Northampton, MA (2000).

  38. R. E. Huie, L. C. T. Shoute and P. Neta, Int. J. Chem. Kinet. 23, 541 (1991).

    Google Scholar 

  39. P. Neta, R. E. Huie and A. B. Ross, J. Phys. Chem. Ref. Data 17, 1027 (1988).

    Google Scholar 

  40. C. von Sonntag and H.-P. Schuchmann, in: Peroxyl Radicals, Z. B. Alfassi (Ed.), p. 173. Wiley, Chichester (1997).

    Google Scholar 

  41. S. V. Jovanovic, I. Jovanovic and L. Josimovic, J. Am. Chem. Soc. 114, 9018 (1992).

    Google Scholar 

  42. D. E. Cabelli, in: Peroxyl Radicals, Z. B. Alfassi (Ed.), p. 407. Wiley, Chichester (1997).

  43. H. A. Schwartz and R. W. Dodson, J. Phys. Chem. 93, 409 (1989).

    Google Scholar 

  44. J. F. Endicott, in: Concepts of Inorganic Photochemistry, A. W. Adamson and P. D. Fleischauer (Eds), p. 81. Wiley, New York, NY (1985).

    Google Scholar 

  45. J.-G. Fang, M. Lu, Z.-H. Chen, H.-H. Zhu, Y. Li, L. Yang, L.-M. Wu and Z.-L. Liu, Chem. Eur. J. 8, 4191 (2002).

    Google Scholar 

  46. J. S. Wright, E. R. Johnson and G. A. Di Labio, J. Am. Chem. Soc. 123, 1173 (2001).

    PubMed  Google Scholar 

  47. P. O'Neill, S. Steenken and D. Schulte-Frolinde, J. Phys. Chem. 79, 2773 (1975).

    Google Scholar 

  48. P. Neta, V. Madhavan, H. Zemel and R. W. Fessenden, J. Am. Chem. Soc. 99, 163 (1977).

    Google Scholar 

  49. S. Steenken, C. J. Warren and B. C. Gilbert, J. Chem. Soc. Perkin Trans. 2, 335 (1990).

    Article  Google Scholar 

  50. K. Henbest, P. Douglas, M. S. Garley and A. Mills, J. Photochem. Photobiol. A 80, 299 (1994).

    Article  Google Scholar 

  51. G. R. Dey, D. B. Naik, K. Kishore and P. N. Moorthy, Radiat. Phys. Chem. 43, 365 (1994).

    Article  Google Scholar 

  52. M. W. Wong, A. Pross and L. Radom, J. Am. Chem. Soc. 116, 6284 (1994).

    Google Scholar 

  53. T. Zytowski and H. Fischer, J. Am. Chem. Soc. 118, 437 (1996).

    Article  Google Scholar 

  54. K. Heberger and A. Lopata, J. Org. Chem. 63, 8646 (1998).

    Google Scholar 

  55. J. Grodkowski, P. Neta, C. J. Schlesener and J. K. Kochi, J. Phys. Chem. 89, 4373 (1985).

    Google Scholar 

  56. S. Steenken and P. Neta, J. Am. Chem. Soc. 104, 1244 (1982).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russo, M., Sgariglia, L., D'Angelantonio, M. et al. The antioxidant reactivity of sorbitylfurfural towards potential harmful radicals, studied by radiation chemistry techniques. Research on Chemical Intermediates 30, 253–267 (2004). https://doi.org/10.1163/1568567041257544

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1163/1568567041257544

Navigation