Skip to main content
Log in

Interactions of water and methanol with a mixture of copper and zinc metals: a theoretical ab initio study

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Ab initio cluster quantum chemical calculations at the Hartree–Fock and second-order Møller–Plesset perturbation theory levels were carried out to mimic the interactions of water and methanol with a mixture of Cu and Zn metals. It was shown that both molecular and dissociative adsorption of methanol on a mixture of Cu and Zn metal catalyst are preferred over the corresponding adsorptions of water. Estimated transition-state structures for dissociation of methanol into CH·3 and OH· lie about 9.0 and 22.0 kcal/mol higher compared to the dissociated (forward reaction) and molecular adsorption (reverse reaction) complexes, respectively. Based on distinct radicals' bond energies with the active sites of the catalyst considered, it is suggested that hydrogen molecules could be formed through a chain of homogeneous reactions of methyl radicals released into the gas phase with the water and/or methanol molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N.Y. Topsøe, J.A. Dumesic and H. Topsøe, J.Catal. 151, 241 (1995).

    Google Scholar 

  2. R.Q. Long and R.T. Yang, J.Am.Chem.Soc. 121, 5595 (1999).

    Google Scholar 

  3. M. Iwamoto, S. Yokoo, S. Sakai and S. Kagawa, J.Chem.Soc., Faraday Trans. 77, 1629 (1981).

    Google Scholar 

  4. M. Anpo, Catal.Surv.Jpn. 1, 169 (1997).

    Google Scholar 

  5. M. Shelef, Chem.Rev. 95, 209 (1995).

    Google Scholar 

  6. Y. Li and N. Armor, J.Appl.Catal. 76, L1 (1991).

    Google Scholar 

  7. N.U. Zhanpeisov, M. Matsuoka, H. Mishima, H. Yamashita and M. Anpo, J.Mol.Struct.(Theochem) 454, 201 (1998).

    Google Scholar 

  8. N.U. Zhanpeisov, M. Matsuoka, SH. Yamashita and M. Anpo, J.Phys.Chem.B 102, 6915 (1998).

    Google Scholar 

  9. N.U. Zhanpeisov, S. Higashimoto and M. Anpo, Int.J.Quant.Chem. 84, 677 (2001).

    Google Scholar 

  10. D.R. Lide (Ed.), CRC Handbook of Chemistry and Physics,79th edn. CRC Press, Boca Raton, FL (1999).

    Google Scholar 

  11. S.V. Didziulis, K.D. Butcher and S.L. Cohen, J.Am.Chem.Soc. 111, 7110 (1989).

    Google Scholar 

  12. M. Saito, T. Fujitani and T. Watanabe, Appl.Catal.A: Gen. 138, 311 (1996).

    Google Scholar 

  13. J.L. Li and T. Inui, Appl.Catal.A: Gen. 137, 105 (1996).

    Google Scholar 

  14. Z. Qian, Z. Xu and H. Hattori, Bull.Chem.Soc.Jpn. 64, 3432 (1991).

    Google Scholar 

  15. B.N. Kuznetsov, M.G. Chudinov and V.I. Yakerson, Kinet.Catal. 39, 207 (1998).

    Google Scholar 

  16. T.P. Minyukova, L.M. Plyasova and T.M. Yur'eva, Kinet.Catal. 30, 356 (1989).

    Google Scholar 

  17. H. Itoh, T. Saito and M. Shizuta, Chem.Lett., 699 (1989).

  18. L. Lapidus and A.Yu. Krylova, Rus.Chem.Rev. 67, 941 (1998).

    Google Scholar 

  19. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.A. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle and J.A. Pople, Gaussian 98, Revision A.5.Gaussian, Pittsburgh, PA (1998).

    Google Scholar 

  20. N.C. Handy, P.J. Knowles and K. Somasundran, Theor.Chim.Acta 68, 87 (1985).

    Google Scholar 

  21. D.J. Tozer, N.C. Handy, R.D. Amos, J.A. Pople, R.H. Nobes, X. Yaoming and H.F. Schaefer, Mol.Phys. 79, 777 (1993).

    Google Scholar 

  22. S.F. Boys and F. Bernardi, Mol.Phys. 19, 553 (1970).

    Google Scholar 

  23. I. Mayer and P.R. Surjan, Chem.Phys.Lett. 191, 497 (1992).

    Google Scholar 

  24. P.M. Mayer, J.Phys.Chem.A 103, 5905 (1999).

    Google Scholar 

  25. M. Mavrikakis, L.B. Hansen, J.J. Mortensen, B. Hammer and J.K. Norskov, in: Transition State Modeling for Catalysis, D.G. Truhlar and K. Morokuma (Eds), Chapter 19, p.245.American Chemical Society, Washington,DC (1999).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhanpeisov, N.U., Miyamoto, A. Interactions of water and methanol with a mixture of copper and zinc metals: a theoretical ab initio study. Research on Chemical Intermediates 29, 417–428 (2003). https://doi.org/10.1163/156856703765694354

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856703765694354

Navigation