Advertisement

Research on Chemical Intermediates

, Volume 27, Issue 9, pp 911–916 | Cite as

A quantum chemistry study on the structure and properties of a novel stable strained cyclophane

  • Rong Chen
  • Ke-Chun Zhang
  • Lei Liu
  • Qing-Xiang Guo
Article

Abstract

Different levels of theoretical methods have been used to study a novel stable cylcophane 1,8-[1,8-naphthalenediylbis(4′,4-biphenyldiyl)]naphthalene. It was concluded that HF/3-21g* was the most efficient method for the system, which could well reproduce the experimental structure. In addition, HF/3-21g* / /B3LYP/3-21g* calculations explained the experimental observation that the cyclophane was much easier to be oxidized to the corresponding radical cation than its related compound 1,8-bisphenyl-naphthalene. It was proposed that the more effective π -π and π -cation interactions in the radical cation of the cyclophane caused the above behavior.

Keywords

Physical Chemistry Inorganic Chemistry Naphthalene Experimental Observation Efficient Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1. (a)
    D. J. Cram and J. M. Cram, Acc. Chem. Res. 4, 204 (1971)Google Scholar
  2. 1. (b)
    F. Bickelhaupt, Pure Appl. Chem. 62, 373 (1990)Google Scholar
  3. 1. (c)
    Z. Shi and J.-H. Wang, Chin. J. Org. Chem. 13, 113 (1993)Google Scholar
  4. 1. (d)
    Y. Tobe, Top. Curr. Chem. 172, 1 (1994).Google Scholar
  5. 2. (a)
    R. H. Boyd, J. Chem. Phys. 49, 2574 (1968)Google Scholar
  6. 2. (b)
    H. J. Lindner, Tetrahedron 32, 753 (1976)Google Scholar
  7. 2. (c)
    U. Norinder and O. Wennerstroem, J. Phys. Chem. 89, 3233 (1985).Google Scholar
  8. 3.
    H. Vogler, G. Ege and H. A. Staab, Mol. Phys. 33, 923 (1977).Google Scholar
  9. 4.
    K. Tokita, S. Kondo and N. Mori, Bull. Chem. Soc. Jpn. 53, 3371 (1980).Google Scholar
  10. 5.
    L. W. Jenneskens, F. J. de Kanter, W. H. de Wolf and F. Bickelhaupt, J. Comput. Chem. 8, 1154 (1987).Google Scholar
  11. 6.
    L. Turker, J. Mol. Struct. (Theochem) 530, 119 (2000)Google Scholar
  12. 7.
    R. Castro, P. D. Davidov, K. A. Kumar, A. P. Marchand, J. D. Evanseck and A. E. Kaifer, J. Phys. Org. Chem. 10, 369 (1997).Google Scholar
  13. 8. (a)
    H.-X. Liu, B.-F. Li, Z.-Z. Yang and J.-Z. Sun, Acta Chim. Sin. 52, 29 (1994)Google Scholar
  14. 8. (b)
    H.-X. Liu and J.-Z. Sun, Acta Chim. Sin. 53, 125 (1995)Google Scholar
  15. 8. (c)
    H.-X. Liu, Acta Chim. Sin. 53, 543 (1995)Google Scholar
  16. 8. (d)
    H.-X. Liu, Acta Phys.-Chim. Sin. 11, 896 (1995).Google Scholar
  17. 9. (a)
    H. F. Bettinger, P. v. R. Schleyer and H. F. Schaefer, J. Am. Chem. Soc. 120, 1074 (1998)Google Scholar
  18. 9. (b)
    B. H. Hong, J. Y. Lee, S. J. Cho, S. Yun and K. S. Kim, J. Org. Chem. 64, 5661 (1999)Google Scholar
  19. 9. (c)
    C. Kind, M. Reiher, J. Roder and B. A. Hess, Phys. Chem. Chem. Phys. 2, 2205 (2000)Google Scholar
  20. 9. (d)
    D. Henseler and G. Hohlneicher, J. Mol. Struct. (Theochem) 497, 145 (2000)Google Scholar
  21. 9. (e)
    R. Salcedo, L. E. Sansores, A. Martinez, L. Alexandrova and M. Garcia, J. Organomet. Chem. 603, 225 (2000)Google Scholar
  22. 9. (f)
    P. Saarenketo, R. Suontamo, T. Jodicke and K. Rissanen, Organometallics 19, 2346 (2000).Google Scholar
  23. 10.
    M. Iyoda, T. Kondo, K. Nakao, K. Hara, Y. Kuwatani, M. Yoshida and H. Matsuyama, Org. Lett. 2, 2081 (2000).Google Scholar
  24. 11.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, A. Robb, J. R. Cheeseman, V. G. Za-krzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Mil-lam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Peters-son, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian 98, Revision A. 7, Gaussian, Inc., Pittsburgh, PA (1998).Google Scholar
  25. 12.
    J. C. Ma and D. A. Dougherty, Chem. Rev. 97, 1030 (1997).Google Scholar
  26. 13.
    P. Vath, M. B. Zimmt, D. V. Matyushov and G. A. Voth, J. Phys. Chem. B 103, 9130 (1999).Google Scholar

Copyright information

© VSP 2001 2001

Authors and Affiliations

  • Rong Chen
  • Ke-Chun Zhang
  • Lei Liu
  • Qing-Xiang Guo

There are no affiliations available

Personalised recommendations