Research on Chemical Intermediates

, Volume 27, Issue 1–2, pp 21–34 | Cite as

Optical and electrochemical cations recognition and release from N-azacrown carbazoles

  • Jean-Pierre Malval
  • Corinne Chaimbault
  • Birgit Fischer
  • Jean-Pierre Morand
  • René Lapouyade


Two azacrown derivatives of carbazole have been prepared and their dipole moments in the excited state were estimated from solvatochromism. Their complexation constant K with calcium and sodium cations have been determined from the absorption spectra, the fluorescence spectra and, independently, from the first oxidation potential shift, as a function of the concentration in sodium and calcium perchlorates, when K is lower than 105. The fluorescence spectra of the calcium and sodium complexes in acetonitrile show two bands different from the fluorescence of the free probes, one from the excited complex similar to the fluorescence of the protonated probes and the other one from the nitrogen decoordinated cation complexes. These results are typical for moderatly polar crowned merocyanines with the ionophore acting as an electron-donor substituent. The stepwise decoordination rate of the calcium and sodium cations from the nitrogen atom of the fluorophore is competitive with the rate constant of fluorescence which accounts for the multiple fluorescence but does not allow a distant diffusion of the cations. From the study of the longer lived radical-cation of the azacrown carbazoles, generated electrochemically, the metal cations are completely released from the azacrown receptor as revealed by the unsensitivity of the second oxidation potential to the perchlorate salts. From the probe-cation pair with the higher association constant (log K > 6) the oxidation peak for the complex allows to estimate the decrease of K upon the oxidation of the probe to be a value of K •+/K = 8 × 10-4.


Fluorescence Spectrum Perchlorate Oxidation Peak Carbazole Oxidation Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Prasanna de Silva, H. Q. Nima Gunaratne, Th. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher and T. E. Rice, Chem. Rev. 97, 1515 (1997).Google Scholar
  2. 2.
    For an overview, see J.-P. Desvergne and A. W. Czarnik, Chemosensors of Ion and Molecule Recognition, NATO ASI Series. Kluwer Acad. Pub. (1997).Google Scholar
  3. 3.
    R. Y. Tsien, Biochemistry 19, 2396 (1980).Google Scholar
  4. 4.
    J. H. Kaplan, B. Forbush, III and J. F. Hoffmann, Biochemistry 17, 1929 (1978).Google Scholar
  5. 5.
    R. Warmuth, E. Grell, J.-M. Lehn, J. W. Bats and G. Quinkert, Helv. Chim. Acta 74, 671 (1991).Google Scholar
  6. 6.
    R. A. Bissell, A. P. de Silva, H. Q. N. Gunaratne, P. L. Lynch, G. E. M. Maguire and K. R. A. S. Sandanayake, Chem. Soc. Rev. 21, 187 (1992).Google Scholar
  7. 7.
    W. Rettig and R. Lapouyade, in: Topics in Fluorescence Spectroscopy, Vol. 4: Probe Design and Chemical Sensing, J. R. Lakowicz (Ed.), p. 109. Plenum, New York (1994).Google Scholar
  8. 8.
    B. Valeur, in: Topics in Fluorescence Spectroscopy, Vol. 4: Probe Design and Chemical Sensing, J. R. Lakowicz (Ed.), p. 21. Plenum, New York (1994).Google Scholar
  9. 9.
    M. M. Martin, P. Plaza, N. Dai Hung, Y. H. Meyer, J. Bourson and B. Valeur, Chem. Phys. Lett. 202, 425 (1993).Google Scholar
  10. 10.
    J.-F. Létard, R. Lapouyade and W. Rettig, Pure and Appl. Chem. 65, 1705 (1993).Google Scholar
  11. 11.
    P. Dumon, G. Jonusauskas, F. Dupuy, Ph. Pée, C. Rullière, J.-F. Létard and R. Lapouyade, J. Phys. Chem. 98, 10391 (1994).Google Scholar
  12. 12.
    R. Mathevet, G. Jonusauskas, C. Rullière, J.-F. Létard and R. Lapouyade, J. Phys. Chem. 99, 15709 (1995).Google Scholar
  13. 13.
    G. Jonusauskas, R. Lapouyade, S. Delmond, J.-F. Letard and C. Rulliere, J. Chim. Phys. 93, 1670 (1996).Google Scholar
  14. 14.
    M. M. Martin, P. Plaza, Y. H. Meyer, F. Badaoui, J. Bourson, J.-P. Lefèvre and B. Valeur, J. Phys. Chem. 100, 6879 (1996).Google Scholar
  15. 15.
    R. K. Eikhman, V. O. Lukashevich and E. A. Silaeva, Org. Chem. Ind. (USSR) 6, 93 (1939).Google Scholar
  16. 16.
    T. S. Stevens and S. H. Tucker, J. Chem. Soc. 123, 2140 (1923).Google Scholar
  17. 17.
    N. L. Allinger and E. S. Jones, J. Org. Chem. 27, 72 (1962).Google Scholar
  18. 18.
    H. Maeda, S. Furuyoshi, Y. Nakatsuji and M. Okahara, Bull. Chem. Soc. Jpn. 56, 212 (1983).Google Scholar
  19. 19.
    Y. Nishikata, S.-I. Fukui, M.-A. Kakimoto, Y. Imai, K. Nishiyama and M. Fujihira, Mol. Cryst. Liq. Cryst. 224, 95 (1993).Google Scholar
  20. 20.
    E. Z. Lippert, Z. Naturforsch. 10a, 541 (1955).Google Scholar
  21. 21.
    N. Mataga, Y. Kaifu and M. Koizumi, Bull. Chem. Soc. Jap. 29, 465 (1956).Google Scholar
  22. 22.
    H.-G. Löhr and F. Vögtle, Acc. Chem. Res. 18, 65 (1985).Google Scholar
  23. 23.
    K. Rurack, M. Sczepan, M. Spieles, U. Resch-Genger and W. Rettig, Chem. Phys. Lett. 320, 87 (2000).Google Scholar
  24. 24.
    Z. R. Grabowski and A. Grabowska, Z. Phys. Chem. (Wiesbaden) 101, 197 (1976).Google Scholar
  25. 25.
    H. Shizuka, Acc. Chem. Res. 18, 141 (1985).Google Scholar
  26. 26.
    J. Bourson, J. Pouget and B. Valeur, J. Phys. Chem. 97, 4552 (1993).Google Scholar
  27. 27.
    H. K. Frensdorff, J. Am. Chem. Soc. 93, 600 (1971).Google Scholar
  28. 28.
    P. L. Boulas, M. Gomez-Kaifer and L. Echegoyen, Angew. Chem. Int. Ed. 37, 216 (1998).Google Scholar
  29. 29.
    P. D. Beer, P. A. Gale and G. Z. Chen, J. Chem. Soc., Dalton Trans. 1897 (1999).Google Scholar
  30. 30.
    T. Saji, Chem. Lett. 275 (1986).Google Scholar
  31. 31.
    S. R. Miller, D. A. Gustowski, Z.-H. Chen, G. W. Gokel, L. Echegoyen and A. E. Kaifer, Anal. Chem. 60, 2021 (1988).Google Scholar
  32. 32.
    A. E. Kaifer and S. Mendoza, in: Comprehensive Supramolecular Chemistry, G. W. Gokel (Ed.), Vol. 1, p. 714. Pergamon, Tarryton, NY (1996).Google Scholar
  33. 33.
    B. Svensson, B. Jönsson, M. Fushiki and S. Linse, J. Phys. Chem. 96, 3135 (1992).Google Scholar
  34. 34.
    D. R. Worrall, S. L. Williams, F. Wilkinson, J. E. Crossley, H. Bouas-Laurent and J.-P. De-svergne, J. Phys. Chem. 103, 9255 (1999).Google Scholar

Copyright information

© VSP 2001 2001

Authors and Affiliations

  • Jean-Pierre Malval
    • 1
  • Corinne Chaimbault
    • 1
  • Birgit Fischer
    • 1
  • Jean-Pierre Morand
    • 1
  • René Lapouyade
    • 1
  1. 1.Laboratoire d'Analyse Chimique par Reconnaissance Moléculaire (LACReM)Ecole Nationale Supérieure de Chimie et de Physique de Bordeaux (ENSCPB)TalenceFrance

Personalised recommendations