Skip to main content
Log in

Activation of methane in microwave plasmas at high pressure

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Methane is converted to C2 products in a microwave plasma under pressure up to 400 torr at maximum plasma power of 100 W. Steam is introduced with methane into the plasma zone in order to suppress coke formation. Major products are C2 hydrocarbons. Small amounts of benzene are also formed. Very small amounts of some unusual highly unsaturated hydrocarbons are also formed. Oxygenated products are CO and CO2. The conversion and yields are related to experimental variables by an empirical second order linear model. The conversion of methane ranges from 10 to 60%. The yield of C2 products ranges from 5 to 68%. The major C2 product is acetylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. G. Mallinson, C. M. Slipcevich and S. Ruseh, Reprints of the 194th National Meeting of the ACS, Section of the Fuel Chemistry, New Orleans, Louisiana, 32 (3), 226 (1987).

    Google Scholar 

  2. S. S. Shepelev, H. D. Gesser and N. R. Hunter, Plasma Chem. Plasma Phys. 13, 479 (1993).

    Google Scholar 

  3. S. L. Suib and Z. Zhang, US Patent, No. vn5,015,349 (May 14, 1991).

  4. S. L. Suib and Z. Zhang, US Patent, No. vn5,131,993 (July 21, 1992).

  5. R. P. Zerger, S. L. Suib and Z. Zhang, in: Symposium on Natural Gas Upgrading II, Preprint ACS, Div. Pet. Chem., San Francisco, pp. 344-348 (1992).

  6. . J. Huang and S. L. Suib, J. Phys. Chem. 97, 9405 (1993).

    Google Scholar 

  7. R. J. McCarthy, J. Chem. Phys. 22, 1360 (1954).

    Google Scholar 

  8. J. E. Flinn (Ed.), Engineering, Chemistry and Use of Plasma Reactors, Chem. Eng. Prog. Sym. Ser., Vol. 112 (1971).

  9. T. Junl-Dam and N. F. Brockmeier, Ind. Eng. Chem. Prod. Res. Dev. 9, 388 (1970).

    Google Scholar 

  10. H. V. Boeing, Fundamentals of Plasma Chemistry and Technology. Technomic, Lancaster, UK (1988).

    Google Scholar 

  11. R. F. Baddour and R. S. Timmius (Eds), The Application of Plasmas to Chemical Processing. MIT Press, Cambridge, MA (1967).

    Google Scholar 

  12. J. Huang, M. V. Badani, S. L. Suib, J. B. Harrison and M. Kablauoi, J. Phys. Chem. 98, 206 (1994).

    Google Scholar 

  13. W. Y. Lui, in: 7th International Plasma Chemistry Conference (1985).

  14. R. Mach and H. Drost, in: 6th International Symposium on Plasma Chemistry, Montreal, Quebec, Canada (1983).

    Google Scholar 

  15. Y. Kawahara, J. Phys. Chem. 73, 1648 (1969).

    Google Scholar 

  16. H. Wiener and M. Burton, J. Amer. Chem. Soc. 75, 5815 (1953).

    Google Scholar 

  17. Y. Kawahara, US Patent, No. vn3,663.394 (May 16, 1972).

  18. W. J. Murphy and A. Ravella, Eur. Patent, 0435591A2 (Dec 20, 1990).

  19. DOE/ CE/ 15459-T2, April 23, 1991.

  20. C. M. Shaughnessy, An analysis of the microwave plasma as a chemical reactor, PhD Thesis, The University of Texas at Austin (1971).

    Google Scholar 

  21. K. G. Micllewiz, J. J. Urh and J. W. Carnahan, Spectrochim Acta 40B, 493 (1985).

    Google Scholar 

  22. C. I. M. Beenakker, Spectrochim. Acta 31B, 483 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Suib, S., Harrison, J.B. et al. Activation of methane in microwave plasmas at high pressure. Research on Chemical Intermediates 27, 643–658 (2001). https://doi.org/10.1163/156856701317051743

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856701317051743

Keywords

Navigation