Research on Chemical Intermediates

, Volume 26, Issue 5, pp 427–443 | Cite as

Carbon monoxide hydrogenation over molybdenum carbide catalysts

  • Hyun-Gyu Kim
  • Kyung Hee Lee
  • Jae Sung Lee


Supported and unsupported molybdenum and molybdenum carbides have been studied as catalysts of CO-H2 reactions at 570 K and atmospheric pressure. The initial turnover rates of these catalysts were comparable to those of the more active group VIII elements. However, all molybdenum-based catalysts showed a hydrocarbon product distribution different from those for typical group VIII metals. Furthermore, production of a large amount of CO2 (instead of water) and a high paraffin/olefin ratio reflected high activities of these catalysts for the water-gas shift reaction and hydrogenation, respectively. The high water-gas shift reaction activity allowed a CO-rich synthesis gas to be used efficiently over Mo-based catalysts. The CO-H2 reactions appear to be structure insensitive on molybdenum carbide catalysts, since the rates were independent of particle size and crystal structure of unsupported catalysts and of metal loading of supported catalysts.


Product Distribution Molybdenum Carbide Group Viii Metal Molybdenum Catalyst Molybdenum Hexacarbonyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.F. Schultz, F.S. Karn, and R.B. Anderson, U.S. Burean of Mines, Report 6974 (1967)Google Scholar
  2. 2.
    L. Leclereq, K. Imura, S. Yoshida, T. Barbee, and M. Boudart, Preparation of Catalysis II (B. Delmon, P. Grange, P.A. Jacobs, and G. Poncelet (Eds.), Elsevier, Amsterdam, 1979, p.627Google Scholar
  3. 3.
    M. Saito, and R.B. Anderson, J. Catal., 63, 438 (1980)CrossRefGoogle Scholar
  4. 4.
    Kojima, and E. Miyazaki, J. Catal., 89, 168 (1984)CrossRefGoogle Scholar
  5. 5.
    G.S. Ranhotra, A.T. Bell, and J.A. Reimer, J. Catal., 108, 40 (1987)CrossRefGoogle Scholar
  6. 6.
    B.E. Concha, G.L. Bartholomew, and C.H. Bartholomew, J. Catal., 89, 536 (1984)CrossRefGoogle Scholar
  7. 7.
    M. Logan, A. Gellman, and G.A. Somorjai, J. Catal., 94, 60 (1985)CrossRefGoogle Scholar
  8. 8.
    H. Mirua, M. Osawa, K. Sugiyama, and T. Matsuda, J. Catal., 101, 178 (1986)CrossRefGoogle Scholar
  9. 9.
    R.G. Bowman, and R.L. Burwell, Jr., J. Catal., 63, 4632 (1980)CrossRefGoogle Scholar
  10. 10.
    C.B. Murchison, and D.A. Nurdick, Paper presented at the Coal Technology 1980 Conference, Houston, Texas, 1980Google Scholar
  11. 11.
    C.B. Murchison, Proc. Int. Conf. Chem. Uses of Molybdenum, 4th, (H.F. Barry, P.C.H. Mitchell Eds.), Climax, Ann Arbor, 1982, p. 197Google Scholar
  12. 12.
    A.J. Bridgewater, R. Burch, and P.C.H. Mitchell, J. Catal., 78, 116 (1982)CrossRefGoogle Scholar
  13. 13.
    J.W. Dun, E. Gulari, and K.Y.S. Ng, Appl. Catal., 15, 247 (1985)CrossRefGoogle Scholar
  14. 14.
    J.S. Lee, S.T. Oyama, and M. Boudart, J. Catal., 103, 30 (1987)CrossRefGoogle Scholar
  15. 15.
    J.S. Lee, L. Volpe, F.H. Ribeiro, and M. Boudart, J. Catal., 112, 44 (1988)CrossRefGoogle Scholar
  16. 16.
    J.S. Lee, S. Locatelli, S.T. Oyama, and M. Boudart, J. Catal., 125, 157 (1990)CrossRefGoogle Scholar
  17. 17.
    J.S. Lee, M.H. Yeom and D.-S. Lee, J. Mol. Catal., 62, L45 (1990).CrossRefGoogle Scholar
  18. 18.
    J.S. Lee and M. Boudart, Catal. Lett., 20, 97 (1993)CrossRefGoogle Scholar
  19. 19.
    J.S. Lee, K.H. Lee and J.Y. Lee, J. Phys. Chem., 96, 362 (1992)CrossRefGoogle Scholar
  20. 20.
    E.I. Ko, and R.J. Madix, Surf. Sci., 109, 221 (1981)CrossRefGoogle Scholar
  21. 21.
    R.A. Dalla Betta, A.G. Picken, and M. Shelef, J. Catal., 35, 54 (1974)CrossRefGoogle Scholar
  22. 22.
    M.A. Vannice, J. Catal., 37, 449 (1975)CrossRefGoogle Scholar
  23. 23.
    C.S. Kellner, and A.T. Bell, J. Catal., 75, 251 (1982)CrossRefGoogle Scholar
  24. 24.
    R.B. Anderson, The Fischer-Tropsch Synthesis, Academic Press, Orlands, 1984, p. 159Google Scholar
  25. 25.
    T.J. Thomas, and A. Brenner, J. Mol. Catal., 18, 197 (1983)CrossRefGoogle Scholar
  26. 26.
    P. Biloen, and W.M.H. Sachtler, Adv. Catal., 30, 165 (1981)CrossRefGoogle Scholar
  27. 27.
    H.H. Storch, N. Columbic, and R.B. Anderson, The Fischer-Tropsch and Related Synthesis, Wiley, New York, 1951Google Scholar
  28. 28.
    M.A. Vannice, J. Catal., 44, 152 (1976)CrossRefGoogle Scholar
  29. 29.
    M. Boudart, and M.A. McDonald, J. Phys. Chem., 88, 2185 (1984)CrossRefGoogle Scholar
  30. 30.
    O. Okada, M. Ipponmatsu, M. Kawai, K. Aika, and T. Onishi, Chem. Lett., 1041 (1984)Google Scholar

Copyright information

© VSP 2000

Authors and Affiliations

  • Hyun-Gyu Kim
    • 1
  • Kyung Hee Lee
    • 1
  • Jae Sung Lee
    • 1
  1. 1.Department of Chemical Engineering and School of Environmental EngineeringPohang University of Science & TechnologyPohangKorea

Personalised recommendations