Skip to main content
Log in

Water splitting in low-temperature ac plasmas at atmospheric pressure

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Plasma-induced water splitting at atmospheric pressure has been studied with a novel fan-type Pt reactor and several tubular-type reactors: an all-quartz reactor, a glass reactor, and three metal reactors with Pt. Ni, and Fe as electrodes. Reaction products have been analyzed by using GC (gas chromatography) and Q-MS (quadrupole mass spectrometry). Optical emission spectroscopic studies of the process have been carried out by employing a CCD (charge-coupled device) detector. Water splitting with tubular quartz and glass reactors is probably non-catalytic. However, a heterogeneous catalytic function of surface of metal electrodes has been observed. The variation of hydrogen yield (YH) and energy efficiency (Ee) with operational parameters such as input voltages (Uin), flow rates of carrier gas (FHe), and concentrations of water (CW) has been examined. Plasma-induced water splitting can be described with a kinetic equation of-dCw/dt = kCW 0.2. The rate constants at 3.25 kV are 2.8 × 10−4, 3.5 × 10−3, and 3.4 × 10−2 mol0.8L−0.8 min−1 for tubular glass reactor, a tubular Pt reactor, and a fan-type Pt reactor, respectively. A CSTR (continuous-stirred tank reactor) and PFR (piston-flow reactor) model have been applied to a fan-type reactor and tubular reactor, respectively. A mechanism on the basis of optical emission spectroscopic data has been obtained comprising the energy transfer from excited carrier gas species to water molecules, which split via radicals of HO·, O·, and H· to form H2 and O2. The fan-type Pt reactors exhibit highest activity and energy efficiency among the reactors tested. Higher yields of hydrogen are achieved at higher input voltages, low flow rates, and low concentrations of water (YH = 78 % at Uin of 3.75 kV, FHe of 20 mL/min, and CW of 0.86 %). The energy efficiency exhibits an opposite trend (Ee = 6.1 % at Uin of 1.25 kV, FHe of 60 mL/min and CW of 3.1 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Othmer, Encyclopedia of Chemical Technology, 4th Edition, Vol. 13, 1981, p. 861.

  2. A. Fujisima and K. Honda, Nature 238, 37 (1972).

    Article  Google Scholar 

  3. K. Ehrensberger, A. Frei, P. Kuhn, and H.R. Oswald, Solid State Ionics 78, 151 (1995).

    Article  CAS  Google Scholar 

  4. E.E. Antonov, V.G. Dresvyannikov, and V.I. Popovich, J. New Energy 1, 69 (1996).

    CAS  Google Scholar 

  5. D. Dionghong, E. Borgarello, and M. Grätzel, J. Am. Chem. Soc. 103, 4685 (1981).

    Article  Google Scholar 

  6. G.D. Beni, J. Electrochem. Soc.: Electrochem. Sci. Technol. 129, 67 (1982).

    Google Scholar 

  7. C&E News, Feb. 16, 1998, p. 26.

  8. M. Hara, T. Konda, M. Komoda, S. Ikeda, K. Shinohara, and A. Tanaka, J. Chem. Soc. Chem. Commun. 357 (1998).

  9. R.B. Lockwood, R. E. Miers, L.W. Anderson, J.E. Lawler, and C.C. Lin, Appl. Phys. Lett. 55, 1385 (1989).

    Article  CAS  Google Scholar 

  10. M.V. Badani, J. Huang, S.L. Suib, J.B. Harrison, and M. Kablauoi, Res. Chem. Intermed. 21, 621 (1995).

    Article  CAS  Google Scholar 

  11. R. Manukonda, R. Dillon, and T. Furtak, J. Vac. Sci. Technol. A 13, 1150 (1995).

    Article  CAS  Google Scholar 

  12. V.I. Gibalov, J. Drimal, M. Wronski, and V.G. Samoilovich, Contrib. Plasma Phys. 31, 89 (1991).

    Article  CAS  Google Scholar 

  13. E.N. Eremin, A.N. Mat’tsev, and V.L. Syaduk, Russ. J. Phys. Chem. 45, 635 (1971).

    Google Scholar 

  14. J. Huang, M.V. Badani, S.L. Suib, J.B. Harrison, and M. Kablaoui, J. Phys. Chem. 98, 206 (1994).

    Article  CAS  Google Scholar 

  15. J. Huang and S.L. Suib, J. Phys. Chem. 97, 9403 (1993).

    Article  CAS  Google Scholar 

  16. R.G. Buser and J.J. Sullivan, J. Appl. Chem. 60, 663 (1988).

    Google Scholar 

  17. D. Evans, L.A. Rosocha, G.K. Anderson, J.J. Coogan, and M.J. Kushner, J. Phys. Chem. 74, 5378 (1993).

    CAS  Google Scholar 

  18. M.C. Hsaio, B.T. Merritt, B.M. Penetrante, G.E. Vogtlin, and P.H. Wallman, J. Phys. Chem. 78, 3451 (1995).

    Google Scholar 

  19. S. Futamura and T. Yamamoto, IEEE Trans. Ind. Appl. 33, 447 (1997).

    Article  CAS  Google Scholar 

  20. G. Deng, Y. Zhang, Y. Yu, D. Zou, H. Hou, and C. Li, J. Environ. Sci. 9, 11 (1997).

    CAS  Google Scholar 

  21. M.A. Tas, R. van Hardeveld, and E.M. van Veldhuizen, Plasma Chem. and Processing 17, 371 (1997).

    Article  CAS  Google Scholar 

  22. R. Birckigt, Ger. Offen. DE 19534950, 1997.

  23. J.S. Clements, A. Mizuno, W.C. Finney, and R.H. Davis, IEEE Trans. Ind. Appl. 25, 62 (1989).

    Article  CAS  Google Scholar 

  24. K. Fujii. In: Plasma Technology, M. Capitelli and C. Gorse, (Eds.), 1992, p. 143.

  25. M.B. Chang and J.H. Balbach, J. Appl. Phys. 69, 4409 (1991).

    Article  CAS  Google Scholar 

  26. I. Gallinberti, Pure and Appl. Chem. 60, 663 (1988).

    Article  Google Scholar 

  27. Y. Hayashi and N. Wakatsuki, U. S. Patent 5474747, 1995.

  28. E.N. Eremin, A.N. Mat’tsev, and V.M. Belova, Russ. J. Phys. Chem. 43, 443 (1965).

    Google Scholar 

  29. T. Hasegawa, M. Umemoto, H. Haraguchi, C. Hsiech, and A. Montaser. In: Inductively Coupled Plasmas in Analytical Atomic Spectroscopy, A. Montaser and D.W. Golightly, (Eds.), VCH Publishers, Inc., 1992, p. 375.

  30. H.V. Boenib, Plasma Science and Technology, Cornell University Press, 1982, pp. 32.

  31. D.R.P. Lide (Ed.), CRC Handbook of Chemistry and Physics, 75th Edition, CRC Press, 1994, pp. 10-1–10-127.

  32. R.W.B. Pearse and A.G. Gaydon, The Identification of Molecular Spectra, Chapman and Hall, New York, 1976.

    Google Scholar 

  33. T. Miyazaki, S. Nagasaka, and Y. Kamiya, J. Phys. Chem. 97, 10715 (1993).

    Google Scholar 

  34. T. Miyazaki, S. Nagasaka, and Y. Kamiya, J. Am. Chem. Soc. 116, 10715 (1994).

    Google Scholar 

  35. L.C. Anderson, M. Xu, C.E. Mooney, M.P. Rosynek, and J.H. Lunsford, J. Am. Chem. Soc. 115, 6322 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, J., Suib, S.L., Hayashi, Y. et al. Water splitting in low-temperature ac plasmas at atmospheric pressure. Res Chem Intermed 26, 849–874 (2000). https://doi.org/10.1163/156856700X00354

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856700X00354

Keywords

Navigation