, Volume 12, Issue 5–6, pp 481–492 | Cite as

Prostanoids as friends, not foes: Further evidence from the interference by cycloxygenase-inhibitory drugs when inducing tolerance to experimental arthritigens in rats

  • Michael W. Whitehouse


Pharmacologists have generally been prejudiced against prostanoids, uncritically accepting their suppression as desirable therapy, especially for ‘quick-fix’ analgesia. This myopic perception for a long time ignored (a) the essentiality of prostanoid precursors in nutrition, (b) the physiological protective functions of natural prostaglandins (PGs) (vasculature, stomach, kidney), (c) resolution of inflammation after the expression of COX-2 and (d) increasing therapeutic use of either synthetic PGs (for erectile dysfunction, opthalmic disorders, inducing parturition, etc) or their natural precursors, e.g., ω3-rich polyunsaturated oils, to treat arthritis. Experimental studies in rats have indicated that prostaglandins (E series) are (i) useful, perhaps auto-regulators of established immunoreactivity and (ii) able to amplify (or even induce) anti-inflammatory activity with other agents. Furthermore, anti-prostanoid therapy (APT) can be arthritigenic!!, interfering with the acquisition of tolerance to some arthritigens. For patients with rheumatoid arthritis this additional side-effect of APT, barely recognised to date, may actually perpetuate their arthritis by impairing prostanoid-mediated remission processes. Hopefully, recent adverse publicity about COX-2 inhibitory drugs might stimulate serious re-assessment of some traditional anti-inflammatory therapies with low APT activity for the management of both acute pain (non-addictive cannabinoids, celery seed, etc.) and chronic inflammation, e.g., Lyprinol® (a mussel lipid extract).

Key words

Tolerance adjuvant arthritis anti-prostanoid therapy lyprinol anti-inflammatory prostanoids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aspinall, R. L. and Cammarata, P. S. (1969). Effect of prostag landin E2 on adjuvant arthritis, Nature 224, 1320–1321.PubMedCrossRefGoogle Scholar
  2. Bandeira-Melo, C., Serra, M. F., Diaz, B. L., Cordeiro, R. S. B., Silva, P. M. R., Lenzi, H. L., Bakhle, Y. S., Serhan, C. N. and Martins, M. A. (2000). Cyclooxygenase-2-derived prostaglandin E2 and Lipoxin A4 accelerate resolution of allergic edema in Angiostrongylus costaricensis-infected rats: relationship with concurrent eosinophilia, J. Immunol. 164, 1029–1036.PubMedGoogle Scholar
  3. Banner, K. H., Hoult, J. R., Taylor, M. N., Landells, L. J. and Page, C. P. (1999). Possible contribution of prostaglandin E2 to the antiproliferative effect of phosphodiesterase 4 inhibitors in human mononuclear cells, Biochem. Pharmacol. 58, 1487–1495.PubMedCrossRefGoogle Scholar
  4. Bonta, I. L., Parnham, M. J. and van Vliet, L. (1978). Combination of theophylline and prostaglandin-E1 as inhibitors of the adjuvant-induced arthritis syndrome in rats, Ann. Rheum. Dis. 37, 212–217.PubMedGoogle Scholar
  5. Colville-Nash, P. R. (2004). Professor Derek Willoughby (1930–2004). pA 2 Online, E-Journal of the Brit. Pharmacol. Soc. 2,Issue 2.Google Scholar
  6. Dutta-Roy, A. K., Kahn, N. N. and Sinha, A. K. (1989). Prostaglandin E1; the endogenous physiological regulator of platelet mediated blood coagulation, Prostaglandins Leukotrienes Essent. Fatty Acids Rev. 35, 189–195.CrossRefGoogle Scholar
  7. Faria, A. and Weiner, H. L. (1999). Oral tolerance: mechanisms and therapeutic application, Adv. Immunol. 73, 153–264.PubMedGoogle Scholar
  8. Gilroy, D. W., Colville-Nash, P. R., Willis, D., Chivers, J., Paul-Clark, M. J. and Willoughby, D. A. (1999). Inducible cyclooxygenase may have anti-inflammatory properties. Nature Med. 5, 698–701.PubMedCrossRefGoogle Scholar
  9. Gilroy, D. W., Colville-Nash, P. R., McMaster, S., Sawatzky, D. A., Willoughby, D.A. and Lawrence, T. (2003). Inducible cyclooxygenase-derived 15-deoxy (Delta)12-14PGJ2 brings about acute inflammatory resolution in rat pleurisy by inducing neutrophil and macrophage apoptosis, FASEB J. 17, 2269–2271.PubMedGoogle Scholar
  10. Goldstein, I. M. (1992). Anti-inflammatory effects of prostaglandins, in: Inflammation Basic Principles and Clinical Correlates, 2nd edn, Gallin, H. I., Goldstein, I. M. and Snyderman, R. (Eds.), pp. 1133–1137. Raven Press, New York, NY.Google Scholar
  11. Guas, B. (2000). Lyprinol inhibits LTB4 production by human monocytes, Allerg. Immunol. (Paris) 32, 284–289.CrossRefGoogle Scholar
  12. Halpern, G. (2001). Lyprinol, A natural solution for arthritis and other inflammatory disorders. Avery, New York, NY.Google Scholar
  13. Henriksson, A. E. K., Tagesson, C., Uribe, A., Uvnas-Moberg, K., Nord, C.-E., Gullberg, R. and Johansson, D. (1988). Effects of prostaglandin E2 on disease activity, gastric secretion and intestinal permeability, and morphology in patients with rheumatoid arthritis, Ann. Rheum. Dis. 47, 620–627.PubMedGoogle Scholar
  14. Horrobin, D. F. (1988). Prostaglandin E1: physiological significance and clinical use, Wiener Clin. Wochenschr. 100, 471–477.Google Scholar
  15. Hoult, J. R. and Moore, P. K. (1978). Sulphasalazine is a potent inhibitor of prostaglandin 15-hydroxydehydrogenase: possible basis for therapeutic action in ulcerative colitis, Br. J. Phamacol. 64, 6–8.Google Scholar
  16. Hoult, J. R. and Page, H. (1981). 5-Aminosalicylic acid, a co-factor for colonic prostacyclin synthesis?, Lancet ii, 255.CrossRefGoogle Scholar
  17. Kitsis, E. A., Weissmann, G. and Abramson, S. B. (1991). The prostaglandin paradox: additive inhibition of neutrophil function by aspirin-like drugs and the prostaglandin E1 analogue Misoprostol, J. Rheumatol. 18, 1461–1465.PubMedGoogle Scholar
  18. Largo, R., Diez-Ortego, I., Sanchez-Pernaute, O., Lopez-Armada, M. J., Alvarez-Soria, M. A., Egido, J. and Herrero-Beaumont, G. (2004). EP2/EP4 signalling inhibits monocyte chemoattractant protein-1 production induced by interleukin-1β in synovial fibroblasts, Ann. Rheum. Dis. 63, 1197–1204.PubMedCrossRefGoogle Scholar
  19. Lawrence, T., Gilroy, D. W., Colville-Nash, P. R. and Willoughby, D. A. (2001). Possible new role for NF-kappaB in the resolution of inflammation, Nature Med. 7, 1291–1297.PubMedCrossRefGoogle Scholar
  20. Lawrence, T., Willoughby, D. A. and Gilroy, D. W. (2002). Anti-inflammatory lipid mediators and insights into the resolution of inflammation, Nature Rev. Immunol. 2, 787–795.CrossRefGoogle Scholar
  21. Lewis, A. J. (2003). Inflammation research lifetime achievement award 2003, presented to Derek A. Willoughby, Inflamm. Res. 52, 439–440.PubMedCrossRefGoogle Scholar
  22. Matzinger, P. (2002). The danger model: a renewed sense of self, Science 296, 301–305.PubMedCrossRefGoogle Scholar
  23. McKown, K. M., Carbone, L. D., Kaplan, S. B., Aelion, J. A., Lohr, K. M., Cremer, M. A., Bustillo, J., Gonzalez, M., Kaeley, G., Steere, E. L., Somes, G. W., Myers, L. K., Seyer, J. M., Kang, A. H. and Postlethwaite, A. E. (1999). Lack of efficacy of oral bovine type II collagen added to existing therapy in rheumatoid arthritis, Arthritis Rheum. 42, 1204–1208.PubMedCrossRefGoogle Scholar
  24. Moore, P. K. and Hoult, J. R. (1982). Selective actions of aspirin-and sulphasalazine-like drugs against prostaglandin synthesis and breakdown, Biochem. Pharmacol. 31, 969–971.PubMedCrossRefGoogle Scholar
  25. Mowat, A. M., Strobel, S., Drummond, A. G. and Ferguson, A. (1982). Immunological responses to fed protein antigens in mice. I. Reversal of oral tolerance to ovalbumin by cyclophosphamide, Immunology 45, 105–113.PubMedGoogle Scholar
  26. Phipps, R. P., Roper, R. L. and Stein, S. H. (1990). Regulation of B cell tolerance and triggering by macrophages and lymphoid dendritic cells, Immunol. Rev. 117, 135–158.PubMedCrossRefGoogle Scholar
  27. Phipps, R. P., Stein, S. H. and Roper, R. L. (1991). A new view of prostaglandin E regulation of the immune system, Immunol. Today 12, 349–352.PubMedCrossRefGoogle Scholar
  28. Rainsford, K. D. (2005). Professor Derek Albert Willoughby (1930–2004), Inflammopharmacology 12, 407–439.PubMedCrossRefGoogle Scholar
  29. Rainsford, K. D., Whitehouse, M. W. and Vernon-Roberts, B. (1995). Effects of prostaglandin E1, Misoprostol, on the development of adjuvant arthritis in rats, Inflammopharmacology 3, 49–63.Google Scholar
  30. Raud, J., Sydbom, A., Dahlen, S.-E. and Hedqvist, P. (1989). Prostaglandin E2 prevents diclofenac-induced enhancement of histamine release and inflammation invoked by in vivo challenge with compound 48/80 in the hamster cheek pouch, Agents Actions 28, 108–114.PubMedCrossRefGoogle Scholar
  31. Scheuer, W. V., Hobbs, M. V. and Weigle, W. O. (1987). Interference with tolerance induction in vivo by inhibitors of prostaglandin synthesis, Cell Immunol. 104, 409–418.PubMedCrossRefGoogle Scholar
  32. Serhan, C. N. and Oliw, E. (2001). Unorthodox routes to prostaglandin formation: new twists in cyclooxygenase pathways, J. Clin. Invest. 107, 1481–1489.PubMedCrossRefGoogle Scholar
  33. Shigata, J.-I., Takahashi, S. and Okave, S. (1998). Role of COX-2 in the healing of gastric ulcers in rats, J. Pharmacol. Exp. Ther. 286, 1383–1390.Google Scholar
  34. Spector, W. G. and Willoughby, D. A. (1960). The enzymic inactivation of an adrenalin-like substance in inflammation, J. Pathol. Bacteriol. 80, 271–280.CrossRefGoogle Scholar
  35. Thompson, S. H. G. and Staines, N. A. (1990). Could specific oral tolerance be a therapy for autoimmune disease?, Immunol. Today 11, 396–399.PubMedCrossRefGoogle Scholar
  36. Tyler, M. J., Shearman, D. J., Franco, R., O’Brien, P., Seamark, R. F. and Kelly, R. (1983). Inhibition of gastric acid secretion in the gastric brooding frog Rheobatrachus silus, Science 220, 609–610.PubMedCrossRefGoogle Scholar
  37. Weissmann, G. (1993). Prostaglandins as modulators rather than mediators of inflammation, J. Lipid Mediat. 6, 275–286.PubMedGoogle Scholar
  38. Whitehouse, M. W. (2004). Smoking & Arthritis: thiocyanate (from HCN in smoke) ruptures tolerance to experimental arthritigens in rats, Intern. Med. J. 34(Suppl.), A104.Google Scholar
  39. Whitehouse, M. W. and Vernon-Roberts, B. (1989). Prevention of rat polyarthritis induced with mycobacterial or avridine adjuvants, Abstr. XVII th. ILAR Congr. Rheumatol. Rio de Janeiro, Brazil. Google Scholar
  40. Whitehouse, M. W. and Vernon-Roberts, B. (1991). Conditional pharmacology: expression of anti-inflammatory activity may require pre-existent inflammatory mediators and/or hormones, Inflammopharmacology 1, 61–68.Google Scholar
  41. Whitehouse, M. W., Macrides, T. A., Kalafatis, N., Betts, W. H., Haynes, D. R. and Broadbent, J. (1997). Anti-inflammatory activity of a lipid fraction (Lyprinol®) from the New Zealand green-lipped mussel, Inflammopharmacology 5, 237–246.PubMedGoogle Scholar
  42. Willis, D., Moore, A. R., Frederick, R. and Willoughby, D. A. (1996). Heme oxygenase: a novel target for the modulation of the inflammatory response, Nature Med. 2, 87–90.PubMedCrossRefGoogle Scholar
  43. Willis, D., Moore, A. R. and Willoughby, D. A. (2000). Heme oxygenase isoform expression in cellular and antibody-mediated models of acute inflammation in the rat, J. Pathol. 190, 627–634.PubMedCrossRefGoogle Scholar
  44. Willoughby, D. A. (1968). Effects of PGF2α and PGE1 on vascular permeability, J. Pathol. Bacteriol. 96, 381–387.PubMedCrossRefGoogle Scholar
  45. Willoughby, D. A., Moore, A. R., Colville-Nash, P. R. and Gilroy, D. (2000a). Resolution of inflammation, Int. J. Immunopharmacol. 22, 1131–1135.PubMedCrossRefGoogle Scholar
  46. Willoughby, D. A., Moore, A. R. and Colville-Nash, P. R. (2000b). Cyclopentenone prostaglandins — new allies in the war on inflammation, Nature Med. 6, 137–138.PubMedCrossRefGoogle Scholar
  47. Zurier, R. B. and Quagliatta, F. (1971). Effect of prostanglandin E1 on adjuvant arthritis, Nature 234, 304–305.PubMedCrossRefGoogle Scholar

Copyright information

© VSP 2005

Authors and Affiliations

  • Michael W. Whitehouse
    • 1
  1. 1.Therapeutics Research Unit, Department of MedicineUniversity of Queensland, Princess Alexandra HospitalWoolloongabbaAustralia

Personalised recommendations