, Volume 8, Issue 2, pp 123–148 | Cite as

Garlic and its medicinal potential

  • M. Afzal
  • M. Ali
  • M. Thomson
  • D. Armstrong


Garlic (Allium sativum L.) has many accentuating medicinal properties and has been used as an effective remedy for a variety of chronic ailments including cardiovascular conditions, hyperlipaemia, diabetes, cancer and infectious diseases. It has antitumourigenic, antibacterial, antigangrene and antiatherosclerosis activities, which date back to early human history. The past, present and future potential of garlic and its medicinal merits are presented and the pharmacology of garlic components is discussed.

Garlic (Allium sativum L.) onion (Allium cepa L.) antibacterial antidiabetic immunoprotective antioxidant cardiovascular hyperlepemia atherosclerosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adetumbi, M. A. and Lau, B. H. (1983). Allium sativum (garlic) a natural antibiotic, Med. Hypotheses 12, 227–237.PubMedGoogle Scholar
  2. Agarwal, K. C. (1996). Therapeutic actions of garlic constituents, Med. Res. Rev. 16, 111–124.PubMedGoogle Scholar
  3. Ali, M. (1995). Mechanism by which garlic (Allium sativum) inhibits cyclooxygenase activity. Effect of raw versus boiled garlic extract on the synthesis of prostanoids, Prostaglandins, Leukotrienes and Essential Fatty Acids 53 (6), 397–400.Google Scholar
  4. Ali, M. and McDonald, J. W. D. (1977). Effects of sulphinpyrazone on platelet synthesis and platelet release of of serotinin, J. Lab. Clin. Med. 89, 868.PubMedGoogle Scholar
  5. Ali, M. and Mohammed, S. Y. (1986). Selective suppression of platelet thromboxane formation with sparing of vascular prostacyclin synthesis by aqueous extracts of garlic in rabbits, Prostaglandins, Leukotrienes and Medicine 25, 139–141.Google Scholar
  6. Ali, M., Thomson, M., Al-Naqeeb, M. A., et al. (1990). Antithrombotic activity of garlic: its inhibition of the synthesis of thromboxane-TXB2 during infusion of arachidonic acid and collagen in rabbits, Prostaglandins, Leukotrienes and Essential Fatty Acids 41, 95–99.Google Scholar
  7. Ali, M., Afzal, M., Abul, Y.S.,et al. (1991). Changes in the level of lactic dehydrogenase and transketolase in liver and red cells of rats after treatment with garlic extracts, J. Envir. Sci. and Eng. 26A, 1–11.Google Scholar
  8. Ali, M., Angelo-Khattar, M., Farid, A., et al. (1993). Aqueous extracts of garlic (Allium sativum) inhibit prostaglandin synthesis in ovine ureter, Prostaglandins, Leukotrienes and Essential Fatty Acids 49, 855–859.Google Scholar
  9. Allen, P. and Brook, J. W. (1962). Preparation of thiosulphinates, J. Org. Chem. 27, 1019–1023.Google Scholar
  10. Al-Naqeeb, M. A., Ali, M., Thomson, M., et al. (1992). Histopathological evidence of protec-tive action of garlic against collagen and arachidonic acid toxicity in rabbits, Prostaglandins, Leukotrienes and Essential Fatty Acids 46, 301–306.Google Scholar
  11. Amagase, H., Schaffer, E. M. and Milner, J. A. (1996). Dietary components modify the ability of garlic to suppress 7,12-dimethylbenz(a)anthracene-induced mammary DNA adducts, J. Nutr. 126, 817–824.PubMedGoogle Scholar
  12. Ames, B. N., Shigenaga, M. K. and Hagen, T. M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging, Proc. Natl. Acad. Sci. USA 90, 7915–7922.PubMedGoogle Scholar
  13. Amonkar, S. V. and Banerji, A. (1971). Isolation and characterization of larvicidal principle of garlic, Science 174, 1343.PubMedGoogle Scholar
  14. Anibarro, B., Fontela, J. L. and De La Hoz, F. (1997). Occupational asthma induced by garlic dust, J. Allergy Clin. Immunol. 100, 734–738.PubMedGoogle Scholar
  15. Ankri, S., Miron, T., Robinkov, A., et al. (1997). Allicin from garlic strongly inhibits cysteine proeinases and cytopathic effects of Entamoeba histolytica. Antimicrobial Agents and Chemotherapy 41, 2286–2288.PubMedGoogle Scholar
  16. Apitz-Castro, R., Cabrera, S., Cruz, M. R., et al. (1983). Effects of garlic extract and of three pure components isolated from it on human platelet aggregation, arachidonate metabolism, release reaction and platelet ultrastructure, Thromb. Res. 32, 155–169.PubMedGoogle Scholar
  17. Apitz-Castro, R., Escalante, J., Vargas, R., et al. (1983). Ajoene, the antiplatelet principle of garlic, synergistically potentiates the antiaggregatory action of prostacyclin, forskolin, indomethacin and dipyridamole on human platelets, Thromb. Res. 42, 303–311.Google Scholar
  18. Ariga, T., Oshiba, S. and Tamada, T. (1981). Platelet aggregation inhibitor in garlic, Lancet 1, 150.PubMedGoogle Scholar
  19. Arora, R. P. and Arora, S. (1981). Comparative effect of clofibrate, garlic and onion on alimentary hyperlipemia, Atherosclerosis 4, 447–452.Google Scholar
  20. Augusti, K. T. and Banaim, M. E. (1975). Effect of essential oil of onion (allyl propyl disulphide) on blood glucose, free fatty acid and insulin levels of normal subjects, Clin. Chim. Acta 60, 121–123.PubMedGoogle Scholar
  21. Augusti, K. T. and Mathew, P. T. (1974). Lipid lowering effect of allicin (diallyl disulphide oxide) on long-term feeding to normal rats, Experientia 30, 468–470.PubMedGoogle Scholar
  22. Babu, P. S. and Srinivasan, K. (1997). Influence of dietary capsaicin and onion on the metabolic abnormalities associated with Streptozotocin induced diabetes mellitus, Molecular and Cellular Biochemistry 175, 49–57.PubMedGoogle Scholar
  23. Baghurst, K. I., Raj, M. J. and Truswell, A. S. (1977). Onion and platelet aggregation, Lancet 1, 101.Google Scholar
  24. Barone, F. E. and Tansey, M. R. (1977). Isolation, purification, identification, synthesis, and kinetics of activity of the anticandidal component of Allium sativum and a hypothesis of its mode of action, Mycologia 69, 793–825.PubMedGoogle Scholar
  25. Bayer, T., Wagner, H., Wray, V., et al. (1988). Inhibitor of cylooxygenase and lipoxygenase in onions, Lancet 1, 906.Google Scholar
  26. Belman, S., Solomon, J., Segal, A., et al. (1989). Inhibition of soybean lipoxigenase and mouse skin tumor promotion by onion and garlic components, J. Biochem. Toxicol. 3, 151–160.Google Scholar
  27. Blackwell, G., Duncombe, W., Flower, R., et al. (1977). The distribution and metabolism of arachidonic in rabbit platelets during aggregation and its modification by drugs, Br.J.Pharmacol. 59, 353–366.PubMedGoogle Scholar
  28. Block, E. (1992). The organosulphur chemistry of the genus Allium. Implications for the organic chemistry of sulphur, Angew Chem. Int. Edn. Engl. 31, 1135–1178.Google Scholar
  29. Block, E., Ahmed, S., Jain, M. K., et al. (1984). (E.Z)-Ajoene: A potent antithrombotic agent from garlic, J. Am. Chem. Soc. 106, 8295–8299.Google Scholar
  30. Block, E., Ahmad, S., Catalfamo, J. L., et al. (1986). Antithrombotic organosulphur compounds from garlic, structural mechanistic and synthetic studies, J. Am. Chem. Soc. 108, 7045–7055.Google Scholar
  31. Block, E., Iyer, R., Grisoni, S., et a l. (1988). Lipoxygenase inhibitors from the essential oil of garlic. Markovnikov addition of the allyldithio radical to olefins, J. Am. Chem. Soc. 110, 7813–7817.Google Scholar
  32. Block, E., Naganathan, S., Putman, D., et al. (1992). Allium chemistry: HPLC analysis of thiosulphinates from onion, garlic, wild garlic (ramsmons), leek, scallion, shallot, slephant (great-headed) garlic, chive, and Chinese chive. Uniquely high allyl to methyl ratios in some garlic samples, J. Agric. Food Chem. 40, 2418–2430.Google Scholar
  33. Boarder, M. R. (1995). G protein-coupled P2 purinoceptors: from molecular biology to functional responses, Trends Pharmacol Sci. 16 (4), 133–139.PubMedGoogle Scholar
  34. Bolton, S. and Null, G. (1982). The medical uses of garlic-fact and fiction, J. Am. Pharmacol. Assoc. 22, 40–43.Google Scholar
  35. Bordia, A. (1973). Letter: Essential oil of garlic in prevention of atherosclerosis, Lancet 2, 1491–1492.Google Scholar
  36. Bordia, A., Arora, S. K., Kothari, L. K., et al. (1975a). The protective action of essential oils of onion and garlic in cholesterol-fed rabbits, Atherosclerosis 22, 103–109.PubMedGoogle Scholar
  37. Bordia, A., Bansal, H. C., Arora, S. K., et al. (1975b). Effect of the essential oils of garlic and oinon on alimentary hyperlipemia, Atherosclerosis, 21, 15–19.PubMedGoogle Scholar
  38. Bordia, A., Verma, S. K., Vyas, A. K., et al. (1977). Effect of essential oil of onion and garlic on experimental atherosclerosis in rabbits, Atherosclerosis 26, 379–386.PubMedGoogle Scholar
  39. Bordia, A. (1978). Effect of garlic on human platelet aggregation, Atherosclerosis 30, 355–360.PubMedGoogle Scholar
  40. Bordia, A., Joshi, H. K., Sanadhya, Y. K., et al. (1997). Effect of essential oil of garlic on serum fibrinolytic activity in patients with coronary arterial disease, Atherosclerosis 28, 155–159.Google Scholar
  41. Boullin, D. J. (1988). Garlic as a platelet inhibitor, Lancet 1, 766.Google Scholar
  42. Brady, J. F., Ishizaki, H., Fukuto, J. M., et al. (1991). Inhibition of cytochrome P-450 2El by diallyl sulphide and its metabolites, Chem. Res. Toxicol. 4, 642.PubMedGoogle Scholar
  43. Brown, M. S. and Goldstein, J. L. (1993). Protein prenylation. Mad bet for Rab, Nature 366, 14–15.PubMedGoogle Scholar
  44. Calvey, E. M., White, K. D., Matusik, J. E., et al. (1989). Allium chemistry: Identification of organosulphur compounds in ramp (Allium tricoccum) homogenates, Phytochem. 49, 359–364.Google Scholar
  45. Cavallito, C. J., Buck, J. S. and Suter, C. M. (1954). Allicin, the antibacterial principle of Allium sativum II. Determination of chemical structure, J. Am. Chem. Soc. 66, 1950–1952.Google Scholar
  46. Cipriani, R., Cocco, F., Giacosa, P., et al. (1989). A case-control study of gastric cancer and diet in Italy, Int. J. Cancer 44, 611–616.PubMedGoogle Scholar
  47. Coffier, E., Cerrina J. and Jouvin-Morche, E. (1983). Inhibition of rabbit platelet aggregation by the Ca2+-antagonists verapamil and diltiazem and by trifluorperzaine, Throm. Res. 31, 565–572.Google Scholar
  48. Coplin, J. B. (1923). Glucokinin. An apparent synthesis in normal animal of a hypoglycaemic producing principle, Animal passage of the principle, J. Biol. Chem. 58, 63.Google Scholar
  49. Dankert, J., Tromp, T. F., de Vries, H., et al. (1979). Antimicrobial activity of crude juices of Allium ascalonicum, Allium cepa and Allium stavium, Zentralbl Bakteriol 245, 229–239.Google Scholar
  50. DeKergommeaux, B. D., Ali, M. and McDonald, J. W. D. (1983). Effects of ASA on thromboxane and prostacyclin synthesis by rabbit aorta and pulmonary artery, Prostaglandins, Leukotrienes and Medicine 11, 225–231.Google Scholar
  51. Dirsch, V. M., Gerbes, A. L. and Vollmar, A. M. (1998). Ajoene, a compound of garlic, induces apoptosis in human promyeloleukemic cells, accompanied by generation of reactive oxygen species and activation of nuclear factor, Mol. Pharmacol. 53, 402–407.PubMedGoogle Scholar
  52. Dorant, E., van den Brandt, P. A. and Goldbohm, R. A. (1995). Allium vegetable consumption, garlic supplement intake, and female breast carcinoma incidence, Breast Cancer Res. Treat. 33, 163–170.PubMedGoogle Scholar
  53. Dorant, E., van den Brandt, P. A., Goldbohm, R. A., et al. (1996). Consumption of onions and a reduced risk of stomach carcinoma, Gastroenterology 10, 12–20.Google Scholar
  54. Dorsch, W., Wagner, H., Bayer, T. H., et al. (1988). Anti-asthmatic effects of onions alkensulphinoth-ioic acid alk(en)yl-esters inhibit histamine release, leukotriene and thromboxane biosynthesis in vitro and counteract PAF and allergen-induced bronchial obstruction in vivo, Biochem. Phar-macol. 37, 4479–4481.Google Scholar
  55. Dwivedi, C., Rohlfs, S., Jarvis, D., et al. (1992). Chemoprevention of clinically induced skin tumor development by diallyl sulphide and diallyl disulphide, Pharm. Res. 12, 1668–1670.Google Scholar
  56. Edwards, S. J., Musker, D., Collin, H. A., et al. (1994). The analysis of S-alk(en)yl-L-cysteine sulphoxides (flavour precursors) from species of Allium by high performance liquid chromatography, Phytochem. Anal. 5,4–9.Google Scholar
  57. Elnima, E. I., Ahmad, S. A., Mekkawi, A. G., et al. (1983). The antimicrobial activity of garlic and onion extracts, Pharmazie 38, 747–748.PubMedGoogle Scholar
  58. Fairlamb, A. H. and Cerami, A. (1992). Metabolism and functions of trypanothione in the kinetoplastida, Annu. Rev. Microbiol. 46, 695–729.PubMedGoogle Scholar
  59. Feihioka, M. (1984). Lack of causal relationship between the vasodilator effects of papaverine and cyclic AMP production in the dog basilar artery, Brit. J. Pharmacol. 83, 113–124.Google Scholar
  60. Fukahori, M. (1994). Nitric oxide reversibly suppresses xanthine oxidase activity, Free Radic Res. 21 (4), 203–212.PubMedGoogle Scholar
  61. Fukushima, S., Takada, N., Hori, T., et al. (1997). Cancer prevention by organosulphur compounds from garlic and onion, J. Cell Biochem. Suppl. 27, 100–105.PubMedGoogle Scholar
  62. Galhaher, D. D., Csallany, A. S., Shoeman, D. W., et al. (1993). Diabetes increases excretion of urinary malonaldehyde conjugates in rats, Lipids 28, 663–666.PubMedGoogle Scholar
  63. Gallwitz, H., Bonse, S., Martinez-Cruz, A., et al. (1999). Ajoene is an inhibitor and subversive sub-strate of human glutathione reductase and Trypanosoma cruzi trypanothione reductase: Crystallo-graphic, kinetic and spectroscopic studies, J. Med. Chem. 42, 364–372.PubMedGoogle Scholar
  64. Gebhardt, R., Beck, H. and Wagner, K. G. (1994). Inhibition of cholesterol biosynthesis by allicin and ajoene in rat hepatocytes and Hep G2 cells, Biochim. Biophys. Acta 213, 57–62.Google Scholar
  65. Gerrard, J. M., Peller, J., Drick, T., et al. (1977). Cyclic AMP and platelet prostaglandin synthesis, Prostaglandins 14, 39–50.PubMedGoogle Scholar
  66. Goldman, I. L., Kopelberg, M., Debaene, J. E., et al. (1996). Antiplatelet activity in onion (Allium cepa) is sulphur dependent, Thromb. Haemost. 3, 450–452.Google Scholar
  67. Gudi, V. A. and Singh S. V. (1991). Effect of diallyl sulphide, a naturally occurring anticarcinogen, on glutathione-dependent detoxification enzymes of female CD-1 mouse tissues, Biochem. Phar-macol. 42, 1261–1265.Google Scholar
  68. Guengerich, F. P. (1992). Metabolic activation of carcinogens, Pharmacol Ther. 54, 17–61.PubMedGoogle Scholar
  69. Guinot, P., Caffrey, E., Lambe, R., et al. (1989). Tanakan inhibits platelet-activating factor-induced platelet aggregation in healthy male volunteers, Haemost. 19, 219.Google Scholar
  70. Ha, H., Kim, C., Son, Y., et al. (1994). DNA damage in the kidney of diabetic rats exhibiting microalbuminuria, Free Radic. Biol. Med. 16, 171–174.Google Scholar
  71. Haber, D., Siess, M. H., De Waziers, I., et al. (1994). Modification of hepatic drug-metabolizing enzymes in rat fed naturally occurring allyl sulphides, Xenobiotica 24, 169–182.PubMedGoogle Scholar
  72. Han, J., Lawson, L., Han, G., et al. (1995). A spectrophotometric method for quantitative determina-tion of allicin and total garlic thiosulphinates, Anal. Biochem. 225 (1), 157–160.PubMedGoogle Scholar
  73. Haynes, R. C., Jr. and Murad, F. (1985). Adrenocorticotropic hormone: adrenocortocotropic hormone: Adrenocorticoid steroids biosynthesis, in: The pharmacological basis of therapeutics, Gilman, A. G., Goodman, L. S., Rall, T. W., et al. (Eds), pp. 1459–1989. Macmillan, New York.Google Scholar
  74. Hemanthi, S. C., Nihalini K. D., Prema, K. V., et al. (1994). Lipid peroxide levels in diabetics with micro and macroangiopathies, J. Nutr. Biochem. 5, 442–445.Google Scholar
  75. Hu, J.J., Yoo, J.S., Lin, M., et al. (1996). Protective effects of diallylsulphide on acetaminophen-induced toxicities, Food Chem. Toxicol. 34, 963–969.PubMedGoogle Scholar
  76. Hunt, J. V., Dean, R. T. and Wolff, S. P. (1988). Hydroxyl radical production and autooxidative glycosylation, Biochem. J. 256, 205–212.PubMedGoogle Scholar
  77. Ip, C. and Lisk, D. J. (1994). Enrichment of selenium in allium vegetables for cancer prevention, Carcinogenesis 9, 1881–1885.Google Scholar
  78. Itokawa, Y. (1973). Effect of S-methylcysteine sulphoxide, S-allylcysteine sulphoxide and related sulphur-containing amino acids on lipid metabolism of experimental hypercholesterolemic rats, J. Nutr. 103 (1), 88–92.PubMedGoogle Scholar
  79. Jain, R. C. and Vyas, C. R. (1973). Hypoglycemic action of onion and garlic, Lancet 2, 1491.Google Scholar
  80. Jain, R. C. and Vyas, C. R. (1975). Garlic in alloxan-induced diabetic rabbits, Amer.J.Clin.Nutr. 28 (7), 684–685.PubMedGoogle Scholar
  81. Jain, S. K., Levine, S. N., Duett, J., et al. (1975). Elevated lipid peroxidation levels in red blood cells of streptoazotocin treated in diabetic rats, Metab. Clin. Exp. 39, 971–975.Google Scholar
  82. Jansen, H., Muller, B. and Knobloch, K. (1987). Allicin characterization and its determination by HPLC, Planta Medica 53, 559–562.Google Scholar
  83. Jansen, H., Muller, B. and Knobloch, K. (1989). Characterization of an alliin lyase preparation from garlic (Allium sativum), Planta Medica 55, 322–329.Google Scholar
  84. Kanner, J. (1992). Nitric oxide, an inhibitor of lipid oxidation by lipoxygenase, cyclooxygenase and hemoglobin, Lipids 27 (1), 46–49.PubMedGoogle Scholar
  85. Karplus, P.A., Krauth-Siegel, R.L.Schirmer, R.H., et al. (1988). Inhibition of human glutathione reductase by the nitrosourea drugs, 1,3-bis(2-chloroethyl)-1-nitrosourea and 1-(2-chloroethyl)-3-( 2-hydroxyethyl)-1-nitrosourea. A crystallographic analysis, Eur. J. Biochem. 171, 193–198.PubMedGoogle Scholar
  86. Kashinath, R. T., Joseph, P. K., Hebron, K., et al. (1997). The effects of garlic oil upon serum indicators of liver function, Biochem. Soc. Trans. 25, 5333–5337.Google Scholar
  87. Kawakishi, S. and Orimitsu, M. Y. (1990). Inhibition of platelet aggregation from onion, Phytochem. 29 (11), 3473–3477.Google Scholar
  88. Kendler, B. S. (1987). Garlic (Allium sativum) and onion (Allium cepa): A review of their relationship to cardiovascular disease, Prev. Med. 16, 670–685.PubMedGoogle Scholar
  89. Khattar, A. M., Thulesius, O., Nillson, T., et al. (1989). Motility of the human ureter with special reference to the effect of indomethacin, Scand. J. Urol. Nephrol. 19, 261–265.Google Scholar
  90. Khosravi-Far, R. (1992). Protein prenylation: key to ras function and cancer intervention? Cell Growth Differ. 3 (7), 461–469.PubMedGoogle Scholar
  91. Kim, N. D., Kim, S. G. and Kwak, M. K. (1994). Enhanced expression of rat microsomal epoxide hydrolase gene by organosulphur compounds, Biochem. Pharmacol. 47, 541–547.PubMedGoogle Scholar
  92. Kleijnen, J., Knipschild, P. and Terriet, G. (1989). Garlic, onions and cardiovascular risk factors. A review of the evidence from human experiments with emphasis on commercially available preparations, Brit. J. Clin. Pharm. 28, 535–544.PubMedGoogle Scholar
  93. Koch, J., Berger, L. and Vieregge-Reiter, C. (1989). Allicin in knoblauch-Allium sativum L. und knoblauchpräparatch: Gehaltsbestimmung headspace-gaschromatography, Planta Med. 55, 327–331.Google Scholar
  94. Kodera, Y., Matsuura, H., Yoshida, S., et al. (1989). Allixin, a stress compound from garlic. Pre-hepatic fate of the organosulphur compounds derived form garlic (Allium sativum), Chem. Pharm. Bull. 37, 1656–1658.Google Scholar
  95. Kojima, R., Toyama, Y. and Ohnishi, S. T. (1992). Protective effects of an aged garlic extract on doxorubin-induced cardiotoxicity in the mouse, Nutr. &. Cancer 22, 163–173.Google Scholar
  96. Krauth-Siegel, R. and Schoneck, R. (1995). Trypanothione reductase and lipoamide dehydrogenase as targets for a structure-based drug design, FAS EB J. 9, 1138–1146.Google Scholar
  97. Kreitmair, H. (1931). Pharmacological trials with some domestic plants, E. Merck's Jahrsber. Pharm. 50, 102.Google Scholar
  98. Kubec, R., Krhova, V. and Velisek, J. (1999). Volatile compounds thermally generated from S-propylcysteine and S-propylcysteine sulphoxide: Aroma precursors of Allium vegetables, J. Agric. Food Chem. 47, 1132.PubMedGoogle Scholar
  99. Kwak, M. K., Kim, S. G., Kwak, J. Y., et al. (1994). Inhibition of cytochrome P4502#1 expression by organosulphur compounds allylsulphide, allylmercaptan and allylmethylsulphide in rats, Biochem. Pharmacol. 47, 531–539.PubMedGoogle Scholar
  100. Laakso, I., Seppanen-Laakso T., Hiltunen, R., et al. (1989). Volatile garlic odor components: gas phases and adsorbed exhaled air analysed by headspace gas chromatography-mass spectrometry, Planta Medica 55, 257.Google Scholar
  101. Lancaster, J. E. and Collin, H. A. (1981). Presence of allinase in isolated vacuoles and of alkyl cysteine sulphoxides in the cytoplasm of bulbs of onion (Allium cepa), Plant Science Letters 22, 169–176.Google Scholar
  102. Lawson, L. D. (1991). Identification and HPLC quantitation of the sulphides and dialk(en)yl thiosulphinates in commercial garlic products, Planta Med. 57 (4), 363–370.PubMedGoogle Scholar
  103. Lawson, L. D. (1992). Allicin and other thiosulphinates and their precursors and transformation products from garlic and garlic products, in: Human Medicinal Agents from Plants, Kinghorn, A. D. and Balandrin, M. F. (Eds), pp. 306–320. American Chemical Society, Washington, DC.Google Scholar
  104. Lawson, L. D. (1998). In: Phytomedicines of Europe: Their chemistry and biological activity, Lawson, L. D. and Bauer, R. (Eds). Amer. Chem. Soc., Washington DC 691, 176–209.Google Scholar
  105. Lee, S., Park, S., Oh, J. W., et al. (1998). Natural inhibitors for protein prenyltransferase, Planta Medica 64, 303–308.PubMedGoogle Scholar
  106. Lin, M. C., Wang, E. J., Patten, C., et al. (1996). Protective effect of diallyl sulphone against acetaminophen-induced hepatotoxicity in mice, J. Biochem. Toxicol. 11, 11–20.PubMedGoogle Scholar
  107. Lun, Z. R., Burri, C., Menzinger, M., et al. (1994). Antiparasitic activity of diallyl trisulphide (Dasuansu) on human and animal pathogenic protozoa (Trypanosoma sp., Entamoeba histolytica and Giardia lamblia) in vitro, Ann. Soc. Belge. Med. Trop. 74, 51–59.Google Scholar
  108. Maclouf, J., Fitzpatrick, F. A. and Murphy, R. C. (1989). Transcellular biosynthesis of Eicosanoids, Pharmacol. Res. 21,1–7.Google Scholar
  109. Makheja, A. N., Vanderhoek, J. Y. and Bailey, J. M. (1979). Effect of onion (Allium cepa) extract on platelet aggregation and thromboxane synthesis, Prostaglandins Med. 2, 413–424.PubMedGoogle Scholar
  110. Makheja, A. N. (1980). Altered arachidonic acid metabolism in platelets inhibited by onion or garlic extracts, Adv. Prostaglandin Thromboxane Res. 6, 309–312.PubMedGoogle Scholar
  111. Makheja, A. N., Vanderhoek, J. Y., Bryant, R. W., et al. (1980). Altered arachidonic metabolism in platelets inhibited by onion or garlic extracts, in: Advances in Prostaglandin and Thromboxane Res, Vol. 6, B. Samuelsson, P. W. Ramwell and R. Paoletti (Eds), Raven Press, pp. 309–312. New York.Google Scholar
  112. Makheja, A. N., Low, C. E. and Bailey, J. M. (1981). Biological nature of platelet inhibitors from Allium cepa, Allium sativum and Auricularia polytrica, Thromb. Haemostas. 46, 148–151.Google Scholar
  113. Makheja, A. N. and Bailey, J. M. (1990). Antiplatelet constituents of Garlic and Onion, Agents and Actions 29, 360–364.PubMedGoogle Scholar
  114. Maslin, D. J., Brown, C. A., Das, I., et al. (1997). Nitric oxide a mediator of the effects of garlic, Biochem. Soc. Trans. 25, 195.Google Scholar
  115. Mathew, B. C., Daniel, R. S. and Augusti, K. T. (1996). Hypolipidemic effect of garlic protein substituted for casein in diet of rats compared to those of garlic oil, Indian J. Exp. Biol. 34 (4), 337–340.PubMedGoogle Scholar
  116. Mayeux, P. R., Aggarwal, K. C., Jou, J. S. H., et al. (1988). The pharmacological effects of allicin, a constituents of garlic oil, Agents and Actions 25, 182–190.PubMedGoogle Scholar
  117. McGee, J. O'd. (1991). In: Oxford Textbook of Pathology, McGee, J., O'd., Isaacson, P. G. and Wright, N. A. (Eds), Vol. 2a, Chap. 17, pp. 1287–1426. Oxford.Google Scholar
  118. Milner, J. A. (1996). Garlic: its anticarcinogenic and antitumorigenic properties, Nutr. Rev. 54, 82–86.Google Scholar
  119. Minkes, M., Stanford, N., Chi, M. M. Y., et al. (1977). Cyclic adenosine 3′, 5′-monophosphate inhibits the availability of arachidonate to prostaglandin synthetase in human platelet suspensions, J. Clin. Invest. 59, 449–454.PubMedGoogle Scholar
  120. Mirelman, D., Monheit, D. and Varon, S. (1987). Inhibition of growth of Entamoeba histolytica by allicin, the active principle of garlic (Allium sativum), J. Infect. Dis. 156, 243–244.PubMedGoogle Scholar
  121. Miron, T., Rabinkov, A., Mirelman, D., et al. (1998). Spectrophotometric assay for allicin and alliinase (alliin lyase) activity: reaction of 2-nitro-5-thiobenzoate with thiosulphinates, Anal. Biochem. 265, 317–325.PubMedGoogle Scholar
  122. Mohammad, S. F., Brown, S., Chuang, H. Y. K., et al. (1980). Isolation, characterization, identification and synthesis of an inhibitor of platelet function from Allium sativum, Fed. Proc. 39, 543.Google Scholar
  123. Mohammad, S. F. and Woodward, S. C. (1986). Characterization of a potent inhibitor of platelet aggregation and realease reaction isolated from Allium sativum (garlic), Thromb. Res. 44, 793–806.PubMedGoogle Scholar
  124. Moomaw, J. F. and Casey, P. J. (1992). Mammalian protein geranylgeranyltransferase. Subunit composition and metal requirements, J. Biol. Chem. 267 (24), 17438–17443.PubMedGoogle Scholar
  125. Moore, G. S. and Atkins, R. D. (1977). The fungicidal and fungistatic effects of an aqueous garlic extract on medically important yeast-like fungi, Mycologia 69, 341–348.PubMedGoogle Scholar
  126. Moriguchi, T. Matsuura, H., Itakura, Y., et al. (1996). Allixin, a phytoalexin produced by garlic and its analogues as novel exogenous substrances with neurotrophic activity, Life Sciences 61 (14), 1413–1420.Google Scholar
  127. Nagda, K. K., Ganeriwal, S. K., Nagda, K. C., et al. (1983). Effect of onion and garlic on blood coagulation and fibrinolysis in vitro, Indian J. Physiol. Pharmacol. 27, 141–145.PubMedGoogle Scholar
  128. Naito, S., Yamaguchi, N. and Yokoo, Y. (1981a). Antioxidative activities of vegetables of Allium species. Studies on natural antioxidants Part II, Nippon Shokuhin Kogyo Gakkaishi 28, 291.Google Scholar
  129. Naito, S., Yamaguchi, N. and Yokoo Y. (1981b). Fractionation of antioxidant extracted from garlic. Studies on natural antioxidants Part III, Nippon Shokuhin Kogyo Gakkaishi 28, 465.Google Scholar
  130. Neil, A. and Silagy, C. (1994). Garlic: its cardioprotective properties, Curr. Opin. Lipidol. 5, 6–10.PubMedGoogle Scholar
  131. Niki, E. (1984). Inhibition of oxidation of methyl linoleate in solution by vitamin E and vitamin C, J. Biol. Chem. 259 (7), 4177–4182.PubMedGoogle Scholar
  132. Nock, L. P. and Mazelis, M. (1986). The C-S lyases of higher plants: preparation and properties of homogeneous alliin lyase from garlic (Allium sativum) Arch. Biochem. Biophys. 249, 27–33.PubMedGoogle Scholar
  133. Perchellet, J. P., Perchellet, E. M., Abney, N. L., et al. (1986). Effect of garlic and onion oils on glutathione peroxidase activity, the ratio of reduced/oxidized glutathione and ornithine decarboxy-lase induction in isolated mouse epidermal cells treated with tumor promoters, Cancer Biochem. Biophys. 8, 299–312.PubMedGoogle Scholar
  134. Perchellet, J. P., Perchellet, E. M. and Belman, S. (1990). Inhibition of DMBA-induced mouse skin tumorigenesis by garlic oil and inhibition of two tumor-promotion stages by garlic and onion oils, Nutr. & Cancer 14, 183–193.Google Scholar
  135. Perez, H. A., de la Rosa, M. and Apitz, R. (1994). In vivo activity of ajoene against rodent malaria, Antimicrob. Agents Chemother. 38, 337–339.PubMedGoogle Scholar
  136. Phillips, C. and Poyser, N. L. (1978). Inhibition of platelet aggregation by onion extracts, Lancet 1, 1051–1052.Google Scholar
  137. Pompliano, D. L., Rands, E., Schaber, M. D., et al. (1992). Steady-state kinetic mechanism of Ras farnesyl: protein transferase, Biochemistry 31 (15), 3800–3807.PubMedGoogle Scholar
  138. Prasad, K., Laxdal, V. A., Yu, M., et al. (1996). Evaluation of hydroxyl radical-scavenging properting of garlic, Mol. Cell. Biochem. 154, 55–63.PubMedGoogle Scholar
  139. Rajasree, C. R., Rajamohan, T. and Augusti, K. T. (1998). Antiperoxide effect of garlic protein in alcohol fed rats, Indian J. Exp. Biol. 36 (1), 60–64.PubMedGoogle Scholar
  140. Reicks, M. M. and Crankshaw, D. L. (1996). Modulation of rat hepatic cytochrome P450 activity by garlic organosulphur compounds, Nutr. Cancer 25, 241–248.PubMedGoogle Scholar
  141. Reiss, Y., Brown, M. S. and Goldstein, J. L. (1992). Divalent cation and prenyl pyrophosphate specificities of the protein farnesyltransferase from rat brain, a zinc metalloenzyme, J. Biol. Chem. 267 (9), 6403–6408.PubMedGoogle Scholar
  142. Reiss, Y., Brown, M. S. and Goldstein, J. L. (1990). Inhibition of purified p21ras farnesyl: protein transferase by Cys-AAX tetrapeptides, Cell. 62 (1), 81–88.PubMedGoogle Scholar
  143. Rendu, F., Daveloose, D., Debouzy, J. C., et al. (1989). Ajoene, the anti-platelet compound derived from garlic, specfically inhibits platelet release reaction by affecting the plasma membrane internal microviscosity, Biochem. Pharmacol. 38, 1321–1328.PubMedGoogle Scholar
  144. Rittenhouse-Simmons, S., Russel, F. A. and Deykin, D. (1977). Mobilization of arachidonic acid in human platelets, kinetics and calcium dependency, Biochim. Biophys. Acta 488, 370–380.PubMedGoogle Scholar
  145. Robinkov, A., Miron, T., Konstantinovski, L., et al. (1998). The mode of action of allicin: Trapping of radicals and teraction with thiol containing proteins, Biochem. Biophys. 1379, 233–244.Google Scholar
  146. Robinson, W. W., Mason, R. G. and Wagner, R. H. (1963). Effect of sulphhydryl inhibitors on platelet agglutinability, Proc. Soc. Exp. Biol. Med. 113, 857–863.PubMedGoogle Scholar
  147. Sainani, G. S., Desai, D. B., Natu, M. N., et al. (1979). Onion, garlic and experimental atherosclerosis, Jap. Heart J. 20, 351–357.PubMedGoogle Scholar
  148. Samson, R. R. (1982). Effects of dietary garlic and temporal drift on platelet aggregation, Atherosclerosis 44, 119–120.PubMedGoogle Scholar
  149. Sato, Y., Nishigaki, H., Sakamato, N., et al. (1979). Lipid peroxide levels in plasma of diabetic patients, Biochem. Med. 21, 104–107.PubMedGoogle Scholar
  150. Schaffer, E. M., Liu, J. Z. and Milner, J. A. (1997). Garlic powder and allyl sulphur compounds en-hance the ability of dietary selenite to inhibit 7,12-bimethylbenz[a]anthracene-induced mammary DNA adducts, Nutr. & Cancer 27, 162–168.Google Scholar
  151. Scharfenberg, K., Ryll, T., Wagner, R., et al. (1994). Injuries to cultivated BJA-B cells by ajoene, a garlic-derived natural compound: Cell viability, glutathione metabolism and pools of acidic amino acids, J. Cell. Physiol. 158, 55–60.PubMedGoogle Scholar
  152. Scharfenberg, K. and Wagner, K. G. (1990). The cytotoxic effect of ajoene, a natural product from garlic investigated with different cell lines, Cancer Lett. 53, 103–108.PubMedGoogle Scholar
  153. Schirmer, R. H., Muller, J. G. and Krauth-Siegel, R. L. (1995). Disulphide reductase inhibitors as chemotherapeutic agents: The design of drugs for trypanosomiasis and malaria, Angew. Chem., Int. Ed. Engl. 34, 141–154.Google Scholar
  154. Schmunk, G. A. and Lefer, A. M. (1982). Anti-aggregatory actions of calcium channel blockers in cat platelets, Res. Commun. Chem. Pathol. Pharmacol. 35, 179–185.PubMedGoogle Scholar
  155. Schonleben-Janas, A., Kirsch, P., Mittl, P. R. E., et al. (1996). Inhibition of human glutathione, reductase by 10-arylisoalloxazines: crystallographic, kinetic and electrochemical studies, J. Med. Chem. 39, 1549–1554.PubMedGoogle Scholar
  156. Sharma, R. D. (1990). Hypoglycemic effect of fenugreek seeds in non-insulin dependant diabetic subjects, Nutr. Res. 10, 731–739.Google Scholar
  157. Sheela, C. G. (1992). Antidiabetic effects of S-allyl cysteine sulphoxide isolated from garlic Allium sativum Linn., Indian J. Exp. Biol. 30 (6), 523–526.PubMedGoogle Scholar
  158. Sheela, C. G. (1995). Antiperoxide effects of S-allyl cysteine sulphoxide isolated from Allium sativum Linn. and gugulipid in cholesterol diet fed rats, Indian J. Exp. Biol. 33 (5), 337–341.PubMedGoogle Scholar
  159. Sheela, C. J., Kumud, K. and Augusti, K. T. (1995). Anti-diabetic effects of onion and garlic sulphoxide amino acids in rats, Planta Med. 61, 356–357.PubMedGoogle Scholar
  160. Shenoy, N. R. and Choughuley, A. S. (1992). Inhibitory effect of diet related sulphydryl compounds on the formation of carcinogenic nitrosamines, Cancer Lett. 65, 227–232.PubMedGoogle Scholar
  161. Shimomura, K. N., Iseki, J., Honma, M., et al. (1997). Cysteine-S-conjugate beta-luase activity and pyridoxal phosphate binding site of onion alliin lyase, Biosci. Biotech. Biochem. 61 (8), 1327–1330.Google Scholar
  162. Siess, M. H., Le Bon, A. M., Canivenc-Lavier, M. C., et al. (1977). Modification of hepatic drug-metabolizing enzymes in rats treated with alkyl sulphides, Cancer Lett. 120 (2), 195–201.Google Scholar
  163. Singh, R. J. (1996). Mechanism of nitric oxide release from S-nitrosothiols, J. Biol. Chem. 271, 18596–18603.PubMedGoogle Scholar
  164. Sodimu, O., Joseph, P. K. and Augusti, K. T. I. (1984). Certain biochemical effects of garlic oil on rate maintained on a high fat-high cholesterol diet, Experientia 40, 78–80.PubMedGoogle Scholar
  165. Sparnins, V. L., Barany, G. and Wattenberg, L. W. (1988). Effects of organosulphur compounds from garlic and onions on benzo[a]pyrene-induced neoplasia and glutathione S-transferase activity in the mouse, Carcinogenesis 9, 131–134.PubMedGoogle Scholar
  166. Srivastava, K. C. (1984a). Effects of aqueous extracts of onion, garlic and ginger on platelet aggregation and metabolism of arachidonic acid in the blood vascular system in vitro study, Prostaglandins Leukotrienes and Medicine 13, 227.Google Scholar
  167. Srivastava, K. C. (1984b). Aqueous extracts of onion, garlic and ginger inhibit platelet aggregation and alter arachidonic acid metabolism, Biomed. Biochim. Acta 43, 335–346.Google Scholar
  168. Srivastava, K. C. (1986). Evidence for the mechanism by which garlic inhibits platelet aggregation, Prostaglandins Leukotrienes and Medicine 22, 313–321.Google Scholar
  169. Srivastava, K. C. (1989). Effect of onion and ginger consumption on platelet thromboxan production in humans, Prostaglandins Leukotrienes and Essential Fatty Acids 35, 183–185.Google Scholar
  170. Srivastava, K. C. and Mustafa, T. (1989). Spices: Antiplatelet activity and prostanoid metabolism, Prostaglandins, Leukotrienes and Essential Fatty Acids 38, 255–266.Google Scholar
  171. Srivastava, K. C. and Tayagi, O. D. (1993). Effects of a garlic derived principle (ajoene) on aggregation and arachidonic acid metabolism in human blood platelets, Prostaglandins, Leukotrienes and Essential Fatty Acids 49, 587–591.Google Scholar
  172. Steinmetz, K. A., Kushi, L. H., Bostick, R. M., et al. (1994). Vegetables, fruit and colon cancer in the Iowa women's health study, Amer. J. Epidemiol. 139, 1–15.Google Scholar
  173. Stoll, A. and Seebeck, E. (1947). Purification and characterization of alliin lyase from Welsh onion, Allium sativum L. Agric. Biolo. Chem. 3, 114–115.Google Scholar
  174. Surh, Y. J., Lee, R. C. J., Park, K. K., et al. (1995). Chemoprotective effects of capsaicin and diallyl sulphide against mutagenesis or tumorigenesis by vinyl carbamate and N-nitrosodimethylamine, Carcinogenesis 16, 2467–2471.PubMedGoogle Scholar
  175. Takada, N., Matsuda, T., Otoshi, T., et al. (1994). Enhancement by organosulphur compounds from garlic and onions of diethylnitrosamine-induced glutathione S-transferase positive foci in the rat liver, Cancer Res. 54, 2895–2899.PubMedGoogle Scholar
  176. Torok, B., Belagyi, J., Rietz, B., et al. (1994). Effectiveness of garlic on the radical activity in radical generating systems, Arzbeimittelforschung 44, 608–611.Google Scholar
  177. Turner, M. (1994). Garlic and circulatory disorders, J. Royal Soc. Health 110, 390–393.Google Scholar
  178. Urbina, J. A., Marchan, E., Lazardi, K., et al. (1993). Inhibition of phosphatidylcholine biosynthesis and cell proliferation in Trypanosoma cruzi by ajoene, an antiplatelet compound isolated from garlic, Biochem. Pharmacol. 45, 2381–2387.PubMedGoogle Scholar
  179. Van Damme, E. J. (1992). Isolation and characterization of alliinase cDNA clones from garlic (Allium sativum L.) and related species, Eur. J. Biochem. 209 (2), 751–757.PubMedGoogle Scholar
  180. Vanderhoek, J. Y., Makheja, A. N. and Bailey, J. M. (1980). Inhibition of fatty acid oxygenases by onion and garlic: Evidence for the mechanism by which these oils inhibit platelet aggregation, Biochem. Pharmacol. 29, 3169–3171.PubMedGoogle Scholar
  181. Virtanen, A. I. and Matikkala, E. J. (1976). The isolation of S-methyl-L-cysteine sulphoxide and S-n-propyl-L-cysteinesulphoxide from onion (Allium cepa) and the antibiotic activity of crushed onion, Acta Chem. Scand. 13, 1898–1900.Google Scholar
  182. Wagner, H., Wierer, M. and Fessler, B. (1987). Effects of garlic constituents on arachidonate metabolism, Planta Med. 53, 305–306.PubMedGoogle Scholar
  183. Wang, B.H., Zuzel, K.A., Rahman, K.,et al. (1998). Protective effects of aged garlic extract against bromobenzene toxicity to precision cut rat liver slices, Toxicology 126, 213–222.PubMedGoogle Scholar
  184. Wattenberg, L.W. (1993). Chemoprevention of carcinogenesis by minor non-nutrient constituents of diet, in: Food Nutrition and Chemical Toxicity, Parke, D. V., Ioannides, C. and Walker, R. (Eds), pp. 287–300. Smith-Gordon, London.Google Scholar
  185. Weber, N. D., Anderson, D. O., North, J. A., et al. (1992). In vitro virucidal effects of Allium sativum (garlic) extract and compounds, Planta Med. 58, 417–423.PubMedGoogle Scholar
  186. Weik, R., Francky, A., Striedner, G., et al. (1998). Recombinant expression of alliin lyase from garlic (Allium sativum) in bacteria and yeasts, Planta Med. 64, 387–389.PubMedGoogle Scholar
  187. Weinberg, D. S., Manier, M. L., Richardson, M. D., et al. (1992). Identification and quantification of anticarcinogens in garlic extract and licorice root extract powder, J. High Resolution Chromatogr. 15 (10), 641–654.Google Scholar
  188. Weisberger, A. S. and Pensky, J. (1958). Tumor inhibition by sulphhydryl-blocking agent related to an active principle of garlic (Allium sativum), Cancer Res. 18, 1301–1308.PubMedGoogle Scholar
  189. Wilcox, B. F. (1984). Effects of allylpropyl disulphide isolated from Allium cepa Linn. on high-fat fed rats, Indian J. Biochem. Biophys. 21 (3), 214–216.PubMedGoogle Scholar
  190. Williams, C. H., Jr. (1992). Lipoamide dehydrogenase, glutathione reductase, thioredoxin reductase, and mercuric ion reductase -- a family of flavoenzyme transhydrogenases, in: Chemistry and Biochemistry of Flavoenzymes, Muller, F. (Ed.), Vol. III, pp. 121–211. CRC Press, Boca Raton, FL.Google Scholar
  191. Wills, E. D. (1956). Enzyme inhibition by allicin, the active principle of garlic, Biochem. J. 63, 514–520.PubMedGoogle Scholar
  192. Xun, H., Benson, P. J., Srivastava, S. K., et al. (1997). Induction of glutathione S-transferase pi as a bioassay for the evaluation of potency of inhibitors of benzo(a)pyrene-induced cancer in a murine model, Int. J. Cancer 73, 897–902.PubMedGoogle Scholar
  193. Yamasaki, T. (1991). Effect of allixin, a phytoalexin produced by garlic, on mutagenesis, DNA-binding and metabolism of aflatoxin B1, Cancer Lett. 59 (2), 89–94.PubMedGoogle Scholar
  194. Yates, M. T. (1992). A protective role for nitric oxide in the oxidative modification of low density lipoproteins by mouse macrophages, FEBS Lett. 309 (2), 135–138.PubMedGoogle Scholar
  195. You, W. C., Blot, W. J., Chang, Y. S., et al. (1989). Allium vegetables and reduced risk of stomach cancer, J. Natl. Cancer Inst. 81, 162–164.PubMedGoogle Scholar
  196. Zhang, X. H., Maxwell, S. R., Thorpe, G. H., et al. (1997). The action of garlic upon plasma total antioxidant capacity, Biochem. Soc. Trans. 25 (3), 5233.Google Scholar
  197. Zieger, S. J. and Stitcher, P. (1989). HPLC of S-alk(en)yl-L-cysteine derivatives in garlic including quantitative determination of (+)-S-allyl-L-cysteine sulphoxide (alliin), Planta Med. 55, 372–378.Google Scholar
  198. Zucker, M. B. and Peterson, J. (1970). Effects of acetyl salicyclic acids, and other non-steroidal anti-inflammatory agents and dipyridamole on human blood platelets, J. Lab. Clin. Med. 76, 66.PubMedGoogle Scholar

Copyright information

© VSP 2000 2000

Authors and Affiliations

  • M. Afzal
  • M. Ali
  • M. Thomson
  • D. Armstrong

There are no affiliations available

Personalised recommendations