Research on Chemical Intermediates

, Volume 23, Issue 4, pp 311–323 | Cite as

Sonolytic enhancement of the bactericidal activity of irradiated titanium dioxide suspensions in water

  • M. Stevenson
  • K. Bullock
  • W. -Y. Lin
  • K. Rajeshwar


Irradiated TiO2 suspensions in water were used to inactivate Escherichia coli and Hansenula polymorpha. Two types of batch reactors employing static and recirculating solutions were used in this study. Sonolysis using a 20 kHz ultrasonic unit was found to enhance the microorganism inactivation in all instances, although the enhancement was more modest for the batch recirculation reactor. These data are interpreted within the framework of four possible mechanisms. The mechanism based on sonolytic creation of ·OH appears to provide the most satisfactory explanation of the data trends. The present data also implicate ·OH as the dominant bactericidal agent in irradiated TiO2 suspensions.


TiO2 Bactericidal Activity Photocatalysis Reactor Configuration TiO2 Suspension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Matsunaga, R. Tomoda, T. Nakajima, and H. Wake, FEMS Microbiol. Lett. 29, 211 (1985).CrossRefGoogle Scholar
  2. 2.
    T. Matsunaga, R. Tomoda, T. Nakajima, N. Nakamura, and T. Kamine, Appl. Environ. Microbiol. 54, 1330 (1988).Google Scholar
  3. 3.
    R.W. Matthews. In: Photocatalytic Purification and Treatment of Water and Air, D.F. Ollis and H. Al-Ekabi (Eds.), Elsevier, Amsterdam, 1993, pp. 121–138.Google Scholar
  4. 4.
    J.C. Ireland, P. Klostermann, E.W. Rice, and R.M. Clark, Appl. Environ. Microbiol. 59, 1668 (1993).Google Scholar
  5. 5.
    J.C. Sjogren and R.A. Sierka, Appl. Environ. Microbiol. 60, 344 (1994).Google Scholar
  6. 6.
    C. Wei, Z. Zainal, W.-Y. Lin, N. Williams, R.L. Smith, K. Rajeshwar, and A. Kruzic, Environ. Sci. Technol. 28, 934 (1994).CrossRefGoogle Scholar
  7. 7.
    A. Fujishima, L.A. Nagahara, H. Yoshiki, K. Ajito, and K. Hashimoto, Electrochim. Acta 39, 1229 (1994).CrossRefGoogle Scholar
  8. 8.
    R.J. Watts, S. King, M.P. Orr, G.C. Miller, and B.E. Henry, Wat. Res. 29, 95 (1995).CrossRefGoogle Scholar
  9. 9.
    T. Matsunaga and M. Okochi, Environ. Sci. Technol. 29, 501 (1995).CrossRefGoogle Scholar
  10. 10.
    I.M. Butterfield, P.A. Christensen, G.M. Walker, and C.S. Birch, J. Appl. Electrochem., in press (courtesy preprint).Google Scholar
  11. 11.
    H. Alliger, Am. Lab. Oct., 25 (1975).Google Scholar
  12. 12.
    D.L. Currell and L. Zechmeister, J. Am. Chem. Soc. 80, 207 (1958).CrossRefGoogle Scholar
  13. 13.
    L. Zechmeister and E.F. Magoon, J. Am. Chem. Soc. 78, 2149 (1956).CrossRefGoogle Scholar
  14. 14.
    N. Serpone, R. Terzian, H. Hidaka, and E. Pelizzetti, J. Phys. Chem. 98, 2634 (1994).CrossRefGoogle Scholar
  15. 15.
    A. Durant, H. Francis, J. Reisse, and A. Kirsch-de Mesmaeker, Electrochim. Acta 41, 277 (1996).CrossRefGoogle Scholar
  16. 16.
    R.G. Compton, J.C. Eklund, F. Marken, and D.N. Waller, Electrochim. Acta 41, 315 (1996).CrossRefGoogle Scholar
  17. 17.
    P.V. Kamat and K. Vinodgopal, Langmuir, submitted for publication (courtesy preprint).Google Scholar
  18. 18.
    K. Rajeshwar, J. Appl. Electrochem. 25, 1067 (1995).CrossRefGoogle Scholar
  19. 19.
    K. Rajeshwar, Chem. & Ind. 17 June, 454 (1996).Google Scholar
  20. 20.
    K. Rajeshwar and J.B. Ibanez, Environmental Electrochemistry, Academic Press, San Diego, in press.Google Scholar
  21. 21.
    I. Fridovich, Arch. Biochem. Biophys. 247, 1 (1986).CrossRefGoogle Scholar
  22. 22.
    I. Fridovich. In: Oxygen Radicals and Tissue Injury, B. Halliwell (Ed.), Federation of American Societies for Experimental Biology, Bethesda, MD, 1998, pp. 1–5.Google Scholar
  23. 23.
    M.A. Gleeson and P.E. Sudberg, Yeast 4, 293 (1988).CrossRefGoogle Scholar
  24. 24.
    J.G. Jones and E. Bellion, J. Bacteriol. 173, 4959 (1991).Google Scholar
  25. 25.
    J.G. Jones and E. Bellion, Biochem. J. 280, 475 (1991).Google Scholar
  26. 26.
    R.L. Wolfe, Environ. Sci. Technol. 24, 768 (1990).CrossRefGoogle Scholar
  27. 27.
    C. Petrier, M. Micolle, G. Merlin, J.L. Luche, and G. Revady, Environ. Sci. Technol. 26, 1639 (1992).CrossRefGoogle Scholar
  28. 28.
    E.J. Hart and A. Henglein, J. Phys. Chem. 89, 4342 (1985).CrossRefGoogle Scholar
  29. 29.
    G.M. Rosen, M.J. Barber, and E.J. Rauckman, J. Biol. Chem. 258, 2225 (1983).Google Scholar
  30. 30.
    B.A. Freeman, G.M. Rosen, and M.J. Barber, J. Biol. Chem. 261, 6590 (1986).Google Scholar
  31. 31.
    B.H.J. Bielski, R.L. Arudi, and M.W. Sutherland, J. Biol. Chem. 258, 4759 (1983).Google Scholar
  32. 32.
    R. Cai, K. Hashimoto, A. Fujishima, and Y. Kubota, J. Electroanal. Chem. 326, 345 (1992).CrossRefGoogle Scholar
  33. 33.
    R. Cai, R. Baba, K. Hashimoto, Y. Kubota, and A. Fujishima, J. Electroanal. Chem. 360, 237 (1993).CrossRefGoogle Scholar
  34. 34.
    J.R. Bolton and S.R. Cater. In: Aquatic and Surface Photochemistry, G.R. Helz, R.G. Zepp, and D.G. Crosby (Eds.), Lewis Publishers, Boca Raton, FL, 1994, pp. 467–490.Google Scholar
  35. 35.
    For example, R.W. Matthews. In: Photochemical Conversion and Storage of Solar Energy, E. Pelizzetti and M. Schiavello (Eds.), Kluwer, The Netherlands, 1991, pp. 427–449.Google Scholar

Copyright information

© Springer 1997

Authors and Affiliations

  • M. Stevenson
    • 1
  • K. Bullock
    • 1
  • W. -Y. Lin
    • 1
  • K. Rajeshwar
    • 1
  1. 1.Department of Chemistry and BiochemistryThe University of Texas at ArlingtonArlingtonU.S.A.

Personalised recommendations