Research on Chemical Intermediates

, Volume 22, Issue 2, pp 115–128 | Cite as

Anthracene monomer-dimer photochemistry: High density 3D optical storage memory

  • A. S. Dvornikov
  • P. M. Rentzepis


Ultrafast spectra and kinetics of all spectroscopic states and intermediate species in the photodimerization process of substituted anthracenes have been identified and measured by means of ultrafast spectroscopy. The two forms of this process, monomer and dimer, have been used to construct a 3D optical storage memory device capable of 1013 bits/cm3 density and very large bandwidth. Storage and accessing 3D information is based on non-linear absorption and the different structures of the monomer and dimer. This rather novel 3D memory device and its operation is described in detail.


  1. 1.
    T.K. Gaylord, Opt. Spectra 6, 25 (1972).Google Scholar
  2. 2.
    W.E. Moerner (Ed.), Persistent Hole Burning: Science and Applications, Springer, Berlin, 1987.Google Scholar
  3. 3.
    L. D'Auria, J.P. Huignard, C. Slezak, and E. Spitz, Appl. Opt. 13, 808 (1974).Google Scholar
  4. 4.
    A.S. Dvornikov, S. Esener, and P.M. Rentzepis. In: Optical Computing Hardware, J. Jahns and S.H. Lee (Eds.), Academic Press Inc., 1993, pp. 287–325.Google Scholar
  5. 5.
    A.S. Dvornikov, J. Malkin, and P.M. Rentzepis, J. Phys. Chem. 98, 6746 (1994).CrossRefGoogle Scholar
  6. 6.
    J.H. Stickler and W.W. Ebb, Optics Lett. 16, 1780 (1991).CrossRefGoogle Scholar
  7. 7.
    R.R. Birge, Ann. Rev. Phys. Chem. 9, 683 (1990).CrossRefGoogle Scholar
  8. 8.
    R.R. Birge, P.A. Fleitz, R.A. Gross, J.C. Izgi, A.F. Laurence, J.A. Stuart, and J.R. Tallert, IEEE, FMBS 12, 1788 (1990).Google Scholar
  9. 9.
    C. Brauchle, N. Hampp, and D. Oesterhelt, Adv. Mater. 3, 420 (1991).CrossRefGoogle Scholar
  10. 10.
    R. Thoma, N. Hampp, C. Brauchle, and D. Oesterhelt, Opt. Lett. 16, 651 (1990).CrossRefGoogle Scholar
  11. 11.
    W.J. Tomlinson, E.A. Chandross, R.L. Fork, C.A. Pryde, and A.A. Lamola, Applied Optics 11, 533 (1972).CrossRefGoogle Scholar
  12. 12.
    H. Bouas-Laurent and J.-P. Desvergne. In: Photochromism: Molecules and Systems, H. Durr and H. Bouas-Laurent (Eds), Elsevier, New York, 1990, p. 561.Google Scholar
  13. 13.
    S. Yamamoto, K.H. Grellman, and A. Weller, Chem. Phys. Lett. 70, 241 (1980).CrossRefGoogle Scholar
  14. 14.
    S. Yamamoto and K.H. Grellman, Chem. Phys. Lett. 92, 533 (1982).CrossRefGoogle Scholar
  15. 15.
    W.R. Bergmark, G. Jones, II, T.E. Reinhardt, and A.M. Halpern, J. Am. Chem. Soc. 100, 6665 (1978).CrossRefGoogle Scholar
  16. 16.
    M.A. Iannone and G.W. Scott, Mol. Cryst. Liq. Cryst. 211, 375 (1992).CrossRefGoogle Scholar
  17. 17.
    S. Yamamoto and K.H. Grellman, Chem. Phys. Lett. 85, 73 (1982).CrossRefGoogle Scholar
  18. 18.
    L.E. Manring, K.S. Peters, G. Jones, II, and W.R. Bergmark, J. Am. Chem. Soc., 107, 1485 (1985).CrossRefGoogle Scholar
  19. 19.
    N. Nakashima, M. Murakawa, and N. Mataga, Bull. Chem. Soc. Japan 49, 854 (1976).CrossRefGoogle Scholar
  20. 20.
    I. Carvichael, W.P. Helman, and G.L. Hug, J. Phys. Chem. Ref. Data 16, 239 (1987).Google Scholar
  21. 21.
    S.L. Murov, Handbook of Photochemistry, Marcel Dekker, Inc., New York, 1973.Google Scholar

Copyright information

© Springer 1996

Authors and Affiliations

  • A. S. Dvornikov
    • 1
  • P. M. Rentzepis
    • 1
  1. 1.Department of ChemistryUniversity of California, IrvineIrvineUSA

Personalised recommendations