Research on Chemical Intermediates

, Volume 20, Issue 8, pp 825–833 | Cite as

Environmental photochemistry: Electron transfer from excited humic acid to TiO2 colloids and semiconductor mediated reduction of oxazine dyes by humic acid

  • K. Vinodgopal
Article

Abstract

The ability of naturally occurring Suwanee River Humic acid to sensitize a large bandgap semiconductor such as colloidal TiO2 has been investigated by fluorescence emission. The charge injected from the humic acid sensitizer into the semiconductor was used to reduce a series of oxazine dyes viz:, N,N,N’,N’-tetraethyloxonine and Nile Blue A. The mechanism of such a sensitized reduction process was elucidated by laser flash photolysis methods. The quantum yield for such a reduction calculated from these transient absorption techniques was 0.005.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.F. Ollis, E. Pelizetti, and N. Serpone, Environ. Sci. and Technol., 25, 1522 (1991).CrossRefGoogle Scholar
  2. 2.
    D.F. Ollis and H. El-Akabi, TiO 2 Photocatalytic Purification and Treatment of Water and Air, Elsevier, New York (1993).Google Scholar
  3. 3.
    E. Pelizetti and M. Schiavello, (Eds.), Photochemical Conversion and Storage of Solar Energy, Kluwer Academic Publishers, Dordrecht, Netherlands (1991).Google Scholar
  4. 4.
    D.F. Ollis and C. Turchi, Environ. Prog., 9, 229 (1990).CrossRefGoogle Scholar
  5. 5.
    K.R. Gopidas and P.V. Kamat, J. Phys. Chem., 93, 6428 (1989).CrossRefGoogle Scholar
  6. 6.
    P.V. Kamat, J. Phys. Chem., 93, 859 (1989).CrossRefGoogle Scholar
  7. 7.
    K. Vinodgopal and P.V. Kamat, J. Phys. Chem., 96, 5053 (1992).CrossRefGoogle Scholar
  8. 8.
    K. Vinodgopal and P.V. Kamat, Environ. Sci. and Technol., 26, 1963 (1992).CrossRefGoogle Scholar
  9. 9.
    E. Pelizetti, C. Minero, and V. Maurino, Adv. in Coll. and Interface Sci., 32, 271 (1990).CrossRefGoogle Scholar
  10. 10.
    A.M. Fischer, J.S. Winterle, and T. Mill, In: Photochemistry of Environmental Aquatic Systems; R.G. Zika and W.J. Cooper, (Eds.), ACS Symposium Series 327, American Chemical Society, pp. 141–156, Washington, D. C. (1987).Google Scholar
  11. 11.
    J.F. Power, D.K. Sharma, C. Langford, R. Bonneau, R, and J. Joussot-Dubien, In: Photochemistry of Environmental Aquatic Systems; R.G. Zika and W.J. Cooper, (Eds.), ACS Symposium Series 327, American Chemical Society, pp. 157–173, Washington, D. C. (1987).Google Scholar
  12. 12.
    R.G. Zepp, A.M. Braun, J. Hoigne, and J.A. Leenheer, Environ. Sci. Technol., 21, 485 (1987).CrossRefGoogle Scholar
  13. 13.
    P.V. Kamat and M.A. Fox, Chem. Phys. Lett., 102, 379 (1983).CrossRefGoogle Scholar
  14. 14.
    P.V. Kamat, J.-P. Chauvet, and R.W. Fessenden, J. Phys. Chem., 90, 1389 (1986).CrossRefGoogle Scholar
  15. 15.
    P.V. Kamat and W.E. Ford, Chem. Phys. Lett., 135, 421 (1987).CrossRefGoogle Scholar
  16. 16.
    P.K. Das, M.V. Encinas, R.D. Small, and J.C. Scaiano, J. Amer. Chem. Soc. 101, 6965 (1979).CrossRefGoogle Scholar
  17. 17.
    M. Ewald, C. Bellin, F. Berger, and J.H. Weber, Environ. Sci. Technol., 101, 6965 (1979).Google Scholar
  18. 18.
    G.G. Choudhry, Toxicological and Environ. Chem., 4, 261 (1981).CrossRefGoogle Scholar
  19. 19.
    O.F.X. Donard, C. Belin, and M. Ewald, Sci. of the Tot. Environ., 62, 157 (1987).CrossRefGoogle Scholar
  20. 20. (a)
    P.V. Kamat, J. Chem. Soc., Faraday Trans. 1, 28, 513 (1985); (b) P.V. Kamat, Langmuir, 1, 608 (1985).Google Scholar
  21. 21.
    P.V. Kamat, N.M. Dimitrijevic, and R.W. Fessenden, J. Phys. Chem, 91, 396 (1987).CrossRefGoogle Scholar
  22. 22.
    P.V. Kamat, and N.N. Lichtin, Isr. J. Chem., 22, 113 (1982).Google Scholar
  23. 23.
    A. Yoshimura, M.Z. Hoffman, and H. Sun, J. Photochem. Photobiol., A: Chem, 70, 29 (1993).CrossRefGoogle Scholar

Copyright information

© VSP 1994

Authors and Affiliations

  • K. Vinodgopal
    • 1
  1. 1.Department of ChemistryIndiana University NorthwestGaryUSA

Personalised recommendations