Research on Chemical Intermediates

, Volume 20, Issue 8, pp 815–823 | Cite as

Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts

  • H. Yamashita
  • H. Nishiguchi
  • N. Kamada
  • M. Anpo
  • Y. Teraoka
  • H. Hatano
  • S. Ehara
  • K. Kikui
  • L. Palmisano
  • A. Sclafani
  • M. Schiavello
  • M. A. Fox
Article

Abstract

Photoinduced reduction of CO2 by H2O to produce CH4 and CH3OH has been investigated on wellcharacterized standard TiO2 catalysts and on a Cu2+ loaded TiO2 catalyst. The efficiency of this photoreaction depends strongly on the kind of catalyst and the ratio of H2O to CO2. Anatase TiO2, which has a large band gap and numerous surface OH groups, shows high efficiency for photocatalytic CH4 formation. Photogenerated Ti3+ ions, H and CH3 radicals are observed as reactive intermediates, by ESR at 77 K. Cu-loading of the small, powdered TiO2 catalyst (Cu/TiO2) brings about additional formation of CH3OH. XPS studies suggest that Cu+ plays a significant role in CH3OH formation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Anpo and K. Chiba, J. Mol. Catal., 207, 74 (1992).Google Scholar
  2. 2.
    M. Anpo, T. Shima, S. Kodama and Y. Kubokawa, J. Phys. Chem., 91, 4305 (1987).CrossRefGoogle Scholar
  3. 3.
    M. Anpo, Res. Chem. Intermed., 11, 67 (1989).CrossRefGoogle Scholar
  4. 4.
    Y. Murakami, Preparation Catalysts III, Catalysis Society of Japan, pp. 775 (1983).Google Scholar
  5. 5.
    J. C. Hemminger, R. Carr and G. A. Somorjai, Chem. Phys. Lett., 57, 100 (1978).CrossRefGoogle Scholar
  6. 6.
    T. Inoue, A. Fujishima, S. Konishi and K. Honda, Nature, 277, 637 (1979).CrossRefGoogle Scholar
  7. 7.
    M. Halmann, M. Ulman and B. A.-Blajeni, Sol. Energy, 31, 429 (1983).CrossRefGoogle Scholar
  8. 8.
    B. A.-Blajeni, M. Halmann and J. Manassen, Sol. Energy, 25, 165 (1980).CrossRefGoogle Scholar
  9. 9.
    M. Halmann, V. Katzir, E. Borgarello and J. Kiwi, Sol. Energy, 10, 85 (1984).CrossRefGoogle Scholar
  10. 10.
    O. Ishitani, C. Inoue, Y. Suzuki, T. Ibusuki, J.Photochem. Photobiol, A: Chem., 72, 269 (1993).CrossRefGoogle Scholar
  11. 11.
    M. Anpo, M. Tomonari and M. A. Fox, J. Phys. Chem., 93, 7300 (1989).CrossRefGoogle Scholar
  12. 12.
    G. Munuera, U. R. Arnau and A. Saucedo, J. Chem. Soc., Faraday Trans. 1, 75, 736 (1979).CrossRefGoogle Scholar
  13. 13.
    K. W. Frese, J. Electrochem. Soc. 138, 3338 (1991).CrossRefGoogle Scholar

Copyright information

© VSP 1994

Authors and Affiliations

  • H. Yamashita
    • 1
  • H. Nishiguchi
    • 1
  • N. Kamada
    • 1
  • M. Anpo
    • 1
  • Y. Teraoka
    • 2
  • H. Hatano
    • 3
  • S. Ehara
    • 4
  • K. Kikui
    • 5
  • L. Palmisano
    • 6
  • A. Sclafani
    • 6
  • M. Schiavello
    • 6
  • M. A. Fox
    • 7
  1. 1.Department of Applied Chemistry, College of EngineeringUniversity of Osaka PrefectureOsakaJapan
  2. 2.Department of Applied Chemistry, Faculty of EngineeringNagasaki UniversityNagasakiJapan
  3. 3.Laboratory of Analytical TechnologyOsaka Prefectural Industrial Technology Research InstituteOsakaJapan
  4. 4.Ion Engineering Research Institute CorporationOsakaJapan
  5. 5.Fujikin IncorporatedOsakaJapan
  6. 6.Dipartimento di Ingegneria Chimica dei Processi e dei MaterialiUniversita’ di PalermoItaly
  7. 7.Department of ChemistryThe University of Texas at AustinTexasUSA

Personalised recommendations