Advertisement

Research on Chemical Intermediates

, Volume 19, Issue 5, pp 395–405 | Cite as

On the use of 1,3-diphenylisobenzofuran (DPBF). Reactions with carbon and oxygen centered radicals in model and natural systems

  • P. Carloni
  • E. Damiani
  • L. Greci
  • P. Stipa
  • F. Tanfani
  • E. Tartaglini
  • M. Wozniak
Article

Abstract

1,3-diphenylisobenzofuran (DPBF) is a fluorescent molecule which possesses a highly specific reactivity towards singlet oxygen (1O2) forming an endoperoxide which decomposes to give 1,2-dibenzoylbenzene. This reaction between DPBF and 1O2 can be followed by measuring the decrease in fluorescence intensity of DPBF. In order to check the specificity of DPBF toward free radicals a series of experiments was carried out in Triton-X micelles and in natural systems (rat liver microsomes), in which DPBF was reacted with hydroxy (HO), alkyloxy (RO), alkylperoxy (ROO), and C-centered radicals (2-cyanoisopropyl radical). In all cases, the DPBF is rapidly transformed to 1,2-dibenzoylbenzene in the case of O-centered radicals and to the corresponding adduct in the case of 2-cyanoisopropyl radical. The experiments in the model systems were also carried out from the chemical point of view and the reaction products were isolated and identified. From the results obtained, it should be stressed that DPBF must be used with caution in complex biological systems for the detection of 1O2, as it also reacts with different radical species.

Keywords

NADPH H202 AIBN DPPC PbO2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Sies in H. Sies (Ed.), Oxidative Stress, Academic Press Inc., London, 1985, pp. 1–7.Google Scholar
  2. 2.
    E. Cadenas, Ann. Rev. Biochem. 58, 79 (1989).CrossRefGoogle Scholar
  3. 3.
    M.M. King, E.K. Lai, and P.B. McKay, J. Biol. Chem. 250, 6496 (1975).Google Scholar
  4. 4.
    H. Rosen and S.J. Klebanoff, J. Biol. Chem. 252, 4803 (1977).Google Scholar
  5. 5.
    M. Wozniak, F. Tanfani, E. Bertoli, G. Zolese, and J. Antosiewicz, Biochim. et Biophys. Acta 1082, 94 (1991).Google Scholar
  6. 6.
    L. Ernster and K. Nordenbrand, in R.W. Estabrook and M.E. Pullman (Eds.), Methods of Enzymology, 1967, Vol. X, pp. 574–580.Google Scholar
  7. 7.
    O.H. Lowry, N.J. Rosebrough, A.L. Farr, and R.J. Randall, J. Biol. Chem. 193, 265 (1951).Google Scholar
  8. 8.
    P.D. Thomas and M.J. Poznansky, Analyt. Biochem. 188, 228 (1990).CrossRefGoogle Scholar
  9. 9.
    B. Halliwell and J.M.C. Gutteridge, Free Radicals in Biology and Medicine, Clarendon Press, Oxford, 1987, pp. 1–19.Google Scholar
  10. 10.
    L.L. Smith and M.J. Kulig, J. Am. Chem. Soc. 98, 1027 (1976).CrossRefGoogle Scholar
  11. 11.
    E.A. Mayeda and A.J. Bard, J. Am. Chem. Soc. 96, 4023 (1974).CrossRefGoogle Scholar
  12. 12.
    J.M. Braughler, L.A. Duncan, and R.L. Chase, J. Biol. Chem. 261, 10282 (1986).Google Scholar
  13. 13.
    B. Halliwell, FEBS Lett. 92, 321 (1978).CrossRefGoogle Scholar
  14. 14.
    E.A. Mayeda and A.J. Bard, J. Am. Chem. Soc. 95, 6223 (1973).CrossRefGoogle Scholar
  15. 15.
    A. Singh, N.R. McIntyre, and G.W. Koroll, Photochem. and Photobiol. 28, 595 (1978).CrossRefGoogle Scholar
  16. 16.
    R.L. Huang, S.H. Goh, and S.H. Ong, Chemistry of Free Radicals, Edward Arnold Publishers Ltd., London, 1974, pp. 52–61.Google Scholar
  17. 17.
    P.J. Abell in J.K. Kochi (Ed.), Free Radicals, Wiley-Interscience Publication, New York, 1973, Vol. II, pp. 64–112.Google Scholar
  18. 18.
    K. Gollnick and A. Griesbeck, Tetrahedron 41, 2057 (1985).CrossRefGoogle Scholar
  19. 19.
    G.M. Rosen and E.J. Rauckman, Proceedings of the National Academy of Sciences of the U.S.A. 78, 7346 (1981).CrossRefGoogle Scholar
  20. 20.
    J.A. Howard and K.U. Ingold, J. Am. Chem. Soc. 90, 1056 (1968).CrossRefGoogle Scholar
  21. 21.
    J.R. Kanofsky, H. Sugimoto, and T. Sawyer, J. Am. Chem. Soc. 110, 3698 (1988).CrossRefGoogle Scholar
  22. 22.
    Q.J. Niu and G.D. Mendenhall, J. Am. Chem. Soc. 114, 165 (1992).CrossRefGoogle Scholar
  23. 23.
    M. Davies, Biochem. J. 257, 603 (1989).Google Scholar
  24. 24.
    M.J. Davies, Biochim. et Biophys. Acta 964, 28 (1988).Google Scholar
  25. 25.
    M.J. Kulig and L.L. Smith, J. Org. Chem. 38, 3639 (1973).CrossRefGoogle Scholar
  26. 26.
    E. Cadenas, A. Boveris, and B. Chance, Biochem. J. 187, 131 (1980).Google Scholar
  27. 27.
    A.V. Khan, Biochim. Biophys. Res. Comm. 122, 668 (1984).CrossRefGoogle Scholar
  28. 28.
    J.F.W. Keana, V.S. Prabhu, S. Ohmiya, and C.E. Klopfenstein, J. Org. Chem. 51, 3456 (1986).CrossRefGoogle Scholar

Copyright information

© Springer 1993

Authors and Affiliations

  • P. Carloni
    • 1
  • E. Damiani
    • 1
  • L. Greci
    • 1
  • P. Stipa
    • 1
  • F. Tanfani
    • 2
  • E. Tartaglini
    • 2
  • M. Wozniak
    • 3
  1. 1.Dipartimento di Scienze dei Materiali e della TerraUniversità di AnconaAnconaItaly
  2. 2.Istituto di Biochimica, Facoltà di MedicinaUniversità di AnconaAnconaItaly
  3. 3.Department of BiochemistryMedical Academic SchoolGdanskPoland

Personalised recommendations