Advertisement

Research on Chemical Intermediates

, Volume 17, Issue 2, pp 173–209 | Cite as

The principle of microscopic reversibility in organic chemistry - a critique

  • S. Chandrasekhar
Article

Conclusion

The principle of microscopic reversibility is one of the few generalising principles used in organic chemistry which have their roots in the fundamental laws of thermodynamics. It has, therefore, been highly popular.

However, although the principle has some important uses, its general application is not without pitfalls. The principle is easy to misunderstand and to misapply: indeed, some of its formulations are semantically dubious. The principle is most dangerous when used as a charm, for it is more subtle than some of its formulations suggest.

But above all, the principle may not be used for deducing or disproving the mechanism of a reaction, except when the mechanism in the reverse direction is known independently. For, such use is, perhaps, the deadliest misapplication.

Keywords

Transition State Reverse Reaction Energy Profile Forward Reaction Aldol Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.P. Hammett, Physical Organic Chemistry, 2nd Ed., McGraw-Hill, New York, 1970, p. 142.Google Scholar
  2. 2.
    R.C. Tolman, Proc. Natl. Acad. Sci. USA, 11(1925)436.CrossRefGoogle Scholar
  3. 3.
    S. Dushman in H.S. Taylor and S. Glasstone (Eds.), A Treatise on Physical Chemistry, Vol. I, Van Nostrand, New York, 1942, p. 373.Google Scholar
  4. 4.
    J. Hine, Physical Organic Chemistry, 2nd Ed., McGraw-Hill, New York, 1962, p. 69.Google Scholar
  5. 5.
    J. March, Advanced Organic Chemistry, 3rd Ed., Wiley Eastern, New Delhi, 1985, p. 189.Google Scholar
  6. 6.
    C.K. Ingold, Structure and Mechanssm in Organic Chemistry, 2nd Ed., G. Bell and Sons, London, 1969, p. 250.Google Scholar
  7. 7.
    R.G. Pearson, Symmetry Rules for Chemical Reactions, Wiley, New York, 1976, p. 150; R.L. Burwell and R.G. Pearson, J. Phys. Chem., 70(1966)300.Google Scholar
  8. 8.
    T.H. Lowry and K.S. Richardson, Mechanssm and Theory in Organic Chemistry, 2nd Ed., Harper and Row, New York, 1981, 178.Google Scholar
  9. 9.
    G.W. Klumpp, Reactivity in Organic Chemistry, Wiley, New York, 1982, p. 310.Google Scholar
  10. 10.
    T.C. Bruice and J.J. Bruno, J. Am. Chem. Soc., 84(1962)2128.CrossRefGoogle Scholar
  11. 11.
    A.A. Frost and R.G. Pearson, Kinetics and Mechanism, 2nd Ed., Wiley, New York, 1961, pp. 335–350.Google Scholar
  12. 12.
    W.H. Saunders, Jr., and A.F. Cockerll, Mechanisms of Elimination Reactions, Wiley, New York, 1973, p. 222; D.V. Banthorpe, Elimination Reactions, Elsevier, Amsterdam, 1963, pp. 10, 147, 185, 195.Google Scholar
  13. 13.
    E.L. Eliel, Stereochemistry of Carbon Compounds, McGraw-Hill, New York, 1962, p. 225.Google Scholar
  14. 14.
    H.C. Brown, The Nonclassical Ion Problem, Plenum, New York, 1977, p. 94.Google Scholar
  15. 15.
    H.L. Goering and C.B. Schewene, J. Am. Chem. Soc., 87(1965)3516.CrossRefGoogle Scholar
  16. 16.
    W.P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-Hill, New York, 1962, p. 208.Google Scholar
  17. 17.
    J. Hine, Physical Organic Chemistry, 2nd Ed., McGraw-Hill, New York, 1962, pp. 68–69.Google Scholar
  18. 18.
    G. Hammes, Principles of Chemical Kinetics, Academcc Press, New York, 1978, p. 16.Google Scholar
  19. 19.
    E.D. Hughes, C.K. Ingold, EG. Thorpe and H.C. Volger, J. Chem. Soc., (1961)1133; H.B. Charman, E.D. Hughes, C.K. Ingold and H.C. Volger, ibid., (1961)1142.Google Scholar
  20. 20.
    ER. Jensen and B. Rickborn, Electrophilic Substitution of Organomercurials, McGraw-Hill, New York, 1968, p. 157.Google Scholar
  21. 21.
    D.S. Matteson, Organometallic Reaction Mechanisms, Academcc Press, New York, 1974, pp. 94, 96; Organometal. Chem. Rev., 4(1969)263.Google Scholar
  22. 22.
    EH. Westheimer, Acc. Chem. Res., 1(1968)76; Mislow, Acc. Chem. Res., 3(1970)321.Google Scholar
  23. 23.
    H. Kwart and K.G. King, d-Orbitals in the Chemistry of Silicon, Phosphorus and Sulfur, Springer-Verlag, Berlin-Heidelberg, 1977, p. 122.Google Scholar
  24. 24.
    N.L. Allinger, M.P. Cava, D.C. De Jongh, C.R. Johnson, N.A. Lebel and C.L. Stevens, Organic Chemistry, Worth, New York, 1971, p. 857.Google Scholar
  25. 25.
    C.A. Bunton, Nucleophilic Substitution at a Saturated Carbon Atom, Elsevier, Amsterdam, 1963, p. 37; A. Ledwith and L. Phillips, J. Chem. Soc., (1962)3796.Google Scholar
  26. 26.
    J.M. Harris, Prog. Phys. Org. Chem., 11(1974)89.CrossRefGoogle Scholar
  27. 27.
    W.P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-Hill, New York, 1969, p. 317.Google Scholar
  28. 28.
    J.G. Aston in H.S. Taylor and S. Glasstone (Eds.), A Treatise on Physical Chemistry, Vol. I, Van Nostrand, New York, 1942, p. 517.Google Scholar
  29. 29.
    a) K.J. Laidler, Chemical Kinetics, 2nd Ed., McGraw-Hill, New York, 1965, pp. 110–112; b) B.W. Morrissey, J. Chem. Educ, 52(1975)296; B.H. Mahan, ibid., 52(1975)299.Google Scholar
  30. 30.
    D.D. Fitts, Nonequilibrium Thermodynamics, McGraw-Hill, New York, 1962, p. 136.Google Scholar
  31. 31.
    G.N. Lewis, Proc. Natl. Acad. Sci. USA, 11(1925)179.CrossRefGoogle Scholar
  32. 32.
    K.J. Laidler, Theories of Chemical Reaction Rates, McGraw-Hill, New York, 1969, pp. 72–73.Google Scholar
  33. 33.
    L.P. Hammett, Physical Organic Chemistry, 2nd Ed., McGraw-Hill, New York, 1970, p. 119.Google Scholar
  34. 34.
    E.L. Eliel, Stereochemistry of Carbon Compounds, McGraw-Hill, New York, 1962, p. 244; E.L. Eliel and R.S. Ro, J. Am. Chem. Soc., 79(1957)5992; W.G. Dauben, G.J. Fonken and D.S. Noyce, ibid., 78(1956)2579.Google Scholar
  35. 35.
    S. Chandrasekhar, Chemisrry Education (N.Delhi), accepted for publication.Google Scholar
  36. 36.
    W.P. Jencks, Catalysis in Chemistry and Enzymology, McGraw-Hill, New York, 1969, p. 312.Google Scholar

Copyright information

© Springer 1992

Authors and Affiliations

  • S. Chandrasekhar
    • 1
  1. 1.Department of Organic ChemistryIndian Institute of ScienceBangaloreIndia

Personalised recommendations