Research on Chemical Intermediates

, Volume 12, Issue 1, pp 33–56 | Cite as

The production and spectroscopy of molecular ions isolated in solid neon

  • Marilyn E. Jacox
  • Warrnn E. Thompson


Studies of the molecular spectra of small polyatomic molecular ions are stlll in therr infancy. The availability of survey spectra would facilitate the search for individual vibrational and vibronic bands of gas-phase ion species using sophisticated, highly sensitive laser techniques. Deeectable concentrations not only of simpee ions such as CO+ 2 and H+ 2 but also of dimer cations and anions such as O+ 4 and O- 4 have been stabilized in solid neon when the parett molecule is codeposited with a beam of excited neon atoms. The vibrational fundamentals heretofore observed for the simpee ions isolated in solid neon lie very close to the positions of the corresponding gas-phase band centers. Molecular spectroscopic data are not yet available for the gas-phase dimer ions. Therefore, it is difficutt to estimate how closely the neon-matrix vibrational frequencies here reported for a numbrr of dimer ions correspond to the gas-phase band centers. Some guidance is available from comparison of the argon-matrix spectra of small molecules hydrogen-bonded to HF with the gasphaee spectra of theee hydrogen-bonded species [55]. In theee studies, the effect of the argon matrix is to enhance the apparent hydrogen-bond strength; the HF stretching frequency is lowered by 1 to 5% from the gas-phase value, and the absorptions contributed by the flexing of the HF with respect to the other molecule are raised by 5% or more. Since neon matrices are generally less perturbing than argon matrices, the deviation from the gas-phase frequencies shoudd be somewhat less in neon-matrix studies. In the present experiments, only the high frequency stretching fundamentals have been observed, suggesting that matrix shifss shoudd amoutt to less than 3 or 4%. Therefore, matrix isolation studies such as theee promise to provide a valuable new tool for the detection and spectroscopic characterization of small molecular ions and cluster ions.


Mass Spectrometric Study Isotopic Substitution Alkali Metal Atom Neon Atom Excited Energy Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.-P. Huber and G. Herzberg, Molecular Spectaa and Molecular Structure. IV. Constants of Diatomcc Molecules, Van Nostradd Reinhold, New York, N.Y., 1979.Google Scholar
  2. 2.
    T. A. Miller and V. E. Bondybyy (Eds)., Molecular Ions: Spectroscopy, Structure, and Chemistry, North-Holland Publishing Co., Amsterdam, The Netherlands, 1983.Google Scholar
  3. 3.
    M. E. Jacox, J. Phys. Chem. Ref. Data, 13(1984)945.CrossRefGoogle Scholar
  4. 4.
    M. E. Jacox, J. Phys. Chem. Ref. Data, 17(1988)269.Google Scholar
  5. 5.
    M. E. Jacox, Rev. Chem. Intermed., 2(1978)1.Google Scholar
  6. 6.
    L. Andrews, Ann. Rev. Phys. Chem., 30(1979)79.CrossRefGoogle Scholar
  7. 7.
    L. Andrews, Ref. 2, pp. 91–124.Google Scholar
  8. 8.
    M. E. Jacox, J. Mol. Spectrosc, 113(1985)286.CrossRefGoogle Scholar
  9. 9.
    M. E. Jacox, J. Mol. Struct., 157(1987)43.CrossRefGoogle Scholar
  10. 10.
    L. B. Knight, Jr., Acc. Chem. Res., 19(1986)313.CrossRefGoogle Scholar
  11. 11.
    M. E. Jacox, Chem. Phys., 83(1984)171.CrossRefGoogle Scholar
  12. 12.
    M. E. Jacox and W. B. Olson, J. Chem. Phys., 86(1987)3134.CrossRefGoogle Scholar
  13. 13.
    S. G. Lias, J. E. Bartmess, J. L. Holmes, R. D. Levin, J. F. Liebman, and W. G. Mallard, J. Phys. Chem. Ref. Data, 17(1988), Suppl. #1.Google Scholar
  14. 14.
    K. Kawaguchi, C. Yamada, and E. Hirota, J. Chem. Phys., 82(1985)1174.CrossRefGoogle Scholar
  15. 15.
    M. E. Jacox and W. E. Thompson, J. Chem. Phys., in press.Google Scholar
  16. 16.
    H. Lew and I. Heiber, J. Chem. Phys., 58(1973)1246.CrossRefGoogle Scholar
  17. 17.
    H. Lew, Can. J. Phys., 54(1976)2028.Google Scholar
  18. 18.
    J. E. Reutt, L. S. Wang, Y. T. Lee, and D. A. Shirley, J. Chem. Phys., 85(1986)6928.CrossRefGoogle Scholar
  19. 19.
    K. O. Hartmnn and I. C. Hisatsune, J. Chem. Phys., 44(1966)1913.CrossRefGoogle Scholar
  20. 20.
    I. C. Hisatsune, T. Adl, E. C. Beahm, and R. J. Kempf, J. Phys. Chem., 74(1970)3225.CrossRefGoogle Scholar
  21. 21.
    M. E. Jacox and D. E. Milligan, Chem. Phys. Lett., 28(1974)163.CrossRefGoogle Scholar
  22. 22.
    R. H. Hauge, J. L. Margrave, J. W. Kauffman, N. A. Rao, M. M. Konarski, J. P. Bell, and W. E. Billups, J. Chem. Soc, Chem. Commun., (1981)1258.Google Scholar
  23. 23.
    Z. H. Kafafi, R. H. Hauge, W. E. Billups, and J. L. Margrave, J. Am. Chem. Soc, 105(1983)3886.CrossRefGoogle Scholar
  24. 24.
    R. Teghil, B. Jams, and L. Bencivenni, Inorg. Chim. Acta, 88(1984)115.CrossRefGoogle Scholar
  25. 25.
    L. Manceron, A. Loutellier, and J. P. Perchard, J. Mol. Struct., l29(1985)115.CrossRefGoogle Scholar
  26. 26.
    Z. H. Kafafi, R. H. Hauge, W. E. Billups, and J. L. Margrave, Inorg. Chem., 23(1984)177.CrossRefGoogle Scholar
  27. 27.
    L. Bencivenni, L. D’Alessio, F. Ramondo, and M. Pernio, Inorg. Chim. Acta, 121(1986)161.CrossRefGoogle Scholar
  28. 28.
    S. H. Fleischmnn and K. D. Jordan, J. Phys. Chem., 91(1987)1300.CrossRefGoogle Scholar
  29. 29.
    M. E. Jacox and D. E. Milligan, J. Mol. Spectrosc, 43(1972)148.CrossRefGoogle Scholar
  30. 30.
    D. C. Conway and L. E. Nesbtt, J. Chem. Phys., 48(1968)509.CrossRefGoogle Scholar
  31. 31.
    K. Hiraoka, J. Chem. Phys., 89(1988)3190.CrossRefGoogle Scholar
  32. 32.
    D. C. Conway, J. Chem. Phys., 50(1969)3864.CrossRefGoogle Scholar
  33. 33.
    G. R. Reid, Adv. At. Mol. Phys., 12(1976)375.CrossRefGoogle Scholar
  34. 34.
    E. E. Ferguson, F. C. Fehsenfeld, and D. L. Albrttton, in M. T. Bowers (Ed.), Gas Phase Ion Chemistry, Vol. 1, Academic Press, New York, N.Y., 1979, pp. 45–82.Google Scholar
  35. 35.
    L. Andrews, J. Phys. Chem., 73(1969)3922.CrossRefGoogle Scholar
  36. 36.
    L. Andrews, J. Chem. Phys., 54(1971)4935.CrossRefGoogle Scholar
  37. 37.
    M. E. Jacox and D. E. Milligan, Chem. Phys. Lett., 14(1972)518.CrossRefGoogle Scholar
  38. 38.
    R. R. Smardzewski and L. Andrews, J. Phys. Chem., 77(1973)801.CrossRefGoogle Scholar
  39. 39.
    K. Ohta and K. Morokumn, J. Phys. Chem., 91(1987)401.CrossRefGoogle Scholar
  40. 40.
    J.-H. Yang and D. C. Conway, J. Chem. Phys., 40(1964)1729.CrossRefGoogle Scholar
  41. 41.
    W. E. Thompson and M. E. Jacox, J. Chem. Phys., in review.Google Scholar
  42. 42.
    K. Hiraoka and G. Nakajima, J. Chem. Phys., 88(1988)7709.CrossRefGoogle Scholar
  43. 43.
    S. C. de Castro, H. F. Schaefer III, and R. M. Pitzer, J. Chem. Phys., 74(1981)550.CrossRefGoogle Scholar
  44. 44.
    L. B. Knight, Jr., K. D. Johannessen, D. C. Cobranchi, E. A. Earl, D. Feller, and E. R. Davidson, J. Chem. Phys., 87(1987)885.CrossRefGoogle Scholar
  45. 45.
    M. Ogawa and S. Ogawa, J. Mol. Spectrosc, 41(1972)393.CrossRefGoogle Scholar
  46. 46.
    L. B. Knight, Jr., and J. Steadman, J. Chem. Phys., 77(1982)1750.CrossRefGoogle Scholar
  47. 47.
    L. B. Knight, Jr., and J. Steadman, J. Am. Chem. Soc, 106(1982)900.CrossRefGoogle Scholar
  48. 48.
    S. H. Linn, Y. Ono, and C. Y. Ng, J. Chem. Phys., 74(1981)3342.CrossRefGoogle Scholar
  49. 49.
    J. T. Blair, J. C. Weisshaar, J. E. Carpenter, and F. Weinhold, J. Chem. Phys., 87(1987)392.CrossRefGoogle Scholar
  50. 50.
    L. B. Knight, Jr., J. Steadman, P. K. Miller, D. E. Bowman, E. R. Davidson, and D. Feller, J. Chem. Phys., 80(1984)4593.CrossRefGoogle Scholar
  51. 51.
    K. M. A. Refaey and J. L. Franklin, Int. J. Mass Spectrom. Ion Phys., 20(1976)19.CrossRefGoogle Scholar
  52. 52.
    O. Ayed, L. Manceron, and B. Sim, J. Phys. Chem., 92(1988)37.CrossRefGoogle Scholar
  53. 53.
    D. E. Mlligan, M. E. Jacox, and W. A. Guillory, J. Chem. Phys., 52(1970)3864.CrossRefGoogle Scholar
  54. 54.
    S. C. Ostrander, L. A. Sanders, and J. C. Weisshaar, J. Chem. Phys., 84(1986)529.CrossRefGoogle Scholar
  55. 55.
    M. E. Jacox, Rev. Chem. Intermed., 6(1985)77.Google Scholar

Copyright information

© Springer 1989

Authors and Affiliations

  • Marilyn E. Jacox
    • 1
  • Warrnn E. Thompson
    • 2
  1. 1.Molecular Spectroscopy DivisionNational Institete of Standards and TechnologyGaithersburgU.S.A.
  2. 2.National Scienee FoundationWashington, D. C.U.S.A.

Personalised recommendations