Advertisement

Research on Chemical Intermediates

, Volume 12, Issue 2, pp 141–159 | Cite as

Protonated (protosolvated) onium ions (onlum dications)

  • G. A. Olah
  • G. K. Surya Prakash
  • P. Donald
  • Katherine B. Loker
  • Koop Lammertsma
Article

Conclusions

In this short review we have shown the importance of protosolvation of onium ions (containing non-bonded pairs of electrons) in superacid catalyzed reactions. Such activation can result in unusual reactions such as aromatic alkylation with Meerwein’s salts, aliphatic nitration with nitronium ion, alkylation of saturated hydrocarbons, greatly enhanced activity of acyl cations, etc. Possibly such phenomena may be operative in hydroxylation reactions using protonated hydrogen peroxide in strong acid solutions. Even the reactivity of halonium ions could be enhanced by protosolvation. Consequently, electrophilic protosolvation may play a significant role in strogg acid catalyzed reactions.

Keywords

SbF5 HSO3F Selenonium Aromatic Alkylation FSO3H 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referesces

  1. 1.
    G.K.S. Prakash, T.N. Rawdah, and G.A. Olah, Angew. Chem., 95(1983)356; R.M. Pagni, Tetrahedron, 40(1984)4161.CrossRefGoogle Scholar
  2. 2.
    K. Lammertama, P.V.R. Schleyer, and H. Schwarz, Angew. Chem., submitted; K. Lammertsma, Rev. Chem. Intermed., 9(1988)141; W. Koch and H. Schwarz, in P. Ausloos and S.G. Lias (Eds.), Structure/Reactivity and Thermochemistry of Ions, Rernel Publishing Co., Dordrecht, 1987 p.413; P.v.R. Schleyer, Adv. Mass Spectrom, 10(1986)28; T. Ast, Adv. Mass Spectrom, 10(1986)47; 8(1980)55; W. Koch, F. Maquin, D. Stahn, and H. Schwarz, Chimia, 39(1985)376; P.V.R. Schleyer, Am. Chem. Soc. Div. Petr. Chem. Prepr., 28(1983)413.CrossRefGoogle Scholar
  3. 3.
    L. Pauling, J. Chem. Phys. 1(1933)56.CrossRefGoogle Scholar
  4. 4.
    a) M. Guihaus, A.G. Brenton, J.H. Beynon, M. Rabrenovic, and P.V.R. Schleyer, J. Chem. Soc, Chem. Commun., (1985)210; idem, J. Phys. B17, (1984)L605. b) K. Lammertsma, M. Barzaghi, G.A. Olah, J.A. Pople, P.v.R. Schleyer, and M. Simonetta, J. Am. Chem. Soc, 105(1985)5258. c) K. Lammertsma, J. Am. Chem. Soc, 106(1984)4619.Google Scholar
  5. 5.
    A. Hantzsch and K.S. Caldwell, Z. Phys. Chem., 58(1907)575. H. Goldschmidt and O. Udby, Ibid., 60(1907)728.Google Scholar
  6. 6.
    a) J.N. Bronsted,Reel. Trav. Chim. Pays-Bas, 42(1923)718; N.J. Bronsted, J. Phys. Chem., 30(1926)777. b) T.M. Lowrey, Trans. Faradyy Soc, 20(1924)13; T.M. Lowrey, Chem. Ind. (London., (1923)1048.Google Scholar
  7. 7.
    D.E. Bethell and N. Sheppard, Chem. Phys., 21(1953)1421; C.C. Ferisso and D.F. Horning; Ibid., 23(1955)1464; P.A. Giguere, Rev. Chim. Miner, (1966)627; M. Fourmier and J.C.R. Roziere, Acad. Sci. Ser. C, 270(1970) 729.Google Scholar
  8. 8.
    a) R.C. Taylor and G.L. Vidale, J. Am. Chem. Soc, 78(1956)5999. b) P.A. Gigueee and C. Madec, Chem. Phys. Lett., 37(1976)569 and references cited therein.CrossRefGoogle Scholar
  9. 9.
    J.O. Lundgren and J.M. Williams, J. Chem. Phys., 58(1973)78; J.O. Lundgren, R. Tellgren, and I. Olovsson, Acta. Crystallogr. Sect. B, B34 (1978)2945.CrossRefGoogle Scholar
  10. 10.
    a) P. Kebarle, R.M. Haynes, and J.G. Colling, J. Am. Chem. Soc, 89(1967)5753. b) A.W. Castelman Jr., N.I. Tang, and H.R. Munkelwitz, Science, (1971)173.CrossRefGoogle Scholar
  11. 11.
    a) V. Gold, J.L. Grant, and K.P. Morris, J. Chem. Soc, Chem. Commun., (1967)397 and referencss cited therein, b) G.A. Olah, G.K.S. Prakash, and J. Sommen, Superacids, Wiley-Interscience, New York, 1985 and references therein, c) For recent acidity measurements see: V. Gold, K. Laali, K.P. Morris, and L.Z. Zdunek, J. Chem. Soc, Perkin Trans 2, (1985)859.Google Scholar
  12. 12.
    G.D. Mateesscu and G.M. Benedikt, J. Am. Chem. Soc, 101(1979)3959.CrossRefGoogle Scholar
  13. 13.
    G.A. Olah, A.L. Berrier, and G.K.S. Prakash, J. Am. Chem. Soc, 104Google Scholar
  14. 14.
    K.O. Christe, C.J. Schack, and R.D. Wilson, Inorg. Chem., 14(1975)2224.CrossRefGoogle Scholar
  15. 15.
    M.C.R. Symons, J. Am. Chem. Soc, 102(1980)3982.CrossRefGoogle Scholar
  16. 16.
    a) R.R. Rodwell and L. Radom, J. Am. Chem. Soc, 103(1981)2865. b) R.A. Whiteside, M.J. Frisch, and J.A. Pople, The Carnegie-Melon Quantum Chemistry Archive, 3rd edn., 1983.CrossRefGoogle Scholar
  17. 17.
    G.A. Olah, G.K.S. Prakash, M. Barzaghi, K. Lammertsma, P.V.R. Schleyer, and J.A. Pople, J. Am. Chem. Soc, 108(1986)1062.Google Scholar
  18. 18.
    H.M. Rosenstock, K. Draxl, B.W. Steiner, and J.T. Herron, J. Phys. Chem. Ref. Data, 6 suppl. 1(1977).Google Scholar
  19. 19.
    The algortthm for the tunneling correction to the RRKM theory was used. W.H. Miller, J. Am. Chem. Soc, 101(1979)6810.CrossRefGoogle Scholar
  20. 20.
    M. Rabrenovic, C.J. Proctor, T. Ast, C.G. Herbert, A.G. Brenton, and J.H. Beynon, J. Phys. Chem., 87(1983)3305; T. Ast, C.J. Porter, C.J. Proctor, and J.H. Beynon, Chem. Phys. Lett., 78(1981)439.CrossRefGoogle Scholar
  21. 21.
    a) H. Perst,Oxonium Ions in Organic Chemistry, Verlag Chemie: Weinheim, Germany, (1971). b) H. Perst, in G.A. Olah and P.v.R. Schleyer, (Eds.), Carbonuum Ions, Vol. V, Wiley-Interscience, New York, 1976.Google Scholar
  22. 22.
    G.A. Olah, J.R. DeMember, Y.K. Mo, J.J. Svoboda, P. Schilling, and J.A. Olah, J. Am. Chem. Soc, 96(1974)884.CrossRefGoogle Scholar
  23. 23.
    O. Farooq, M. Marcelli, G.K.S. Prakash, and G.A. Olah, J. Am. Chem. Soc, 110(1988)864.CrossRefGoogle Scholar
  24. 24.
    P.W. Hartland, N.D. Kim, S.A.H. Petrie, Aust. J. Chem., 43(1989)9.Google Scholar
  25. 25.
    W.J. Hehre, L. Radom, P.V.R. Schleyer, and J.A. Pople, Ab Initio Molecular Orbital Theory, Wiley-Interscience, New York, 1986.Google Scholar
  26. 26.
    G.A. Olah, F. Pelizza, S. Kobayashi, and J.A. Olah, J. Am. Chem. Soc, 98(1970)1190.Google Scholar
  27. 27.
    G.A. Olah, K. Dunne, Y.K. Mo, and P. Szilagyi, J. Am. Chem. Soc, 94(1972)4200.CrossRefGoogle Scholar
  28. 28.
    a) M.W. Wong, B.F. Yates, R.H. Nobes, and L. Radom, J. Am. Chem. Soc, 109(1987)3181. b) W.J. Bouma and L. Radom, J. Am. Chem. Soc, 105(1983)5484. c) P.N.L. Summess and J. Tyrrell, J. Am. Chem. Soc, 99(1977)3960. d) P. Cremaschin and M. Simonetta, Theor. Chim. Acta., 43(1971)351.CrossRefGoogle Scholar
  29. 29.
    D. Stahl and F. Maquin, Chem. Phys. Lett., 106(1984)531.CrossRefGoogle Scholar
  30. 30.
    D.M. Brouwer and A.A. Kiffen, Rec Trav. Chim. Pays-Bas, 92(1973)689; loid. (197dJoU9; ibid. (197oJ9Uo.Google Scholar
  31. 31.
    G.A. Olah, A. Germain, H.C. Lin, and D.A. Forsyth, J. Am. Chem. Soc, 97(1982)2928.CrossRefGoogle Scholar
  32. 32.
    W. Koch, G. Frenking, H. Schwarz, F. Maquin, and D. Stahl, Int. J. Mass Spectrom. Ion Proc, 63(1985)59.CrossRefGoogle Scholar
  33. 33.
    I.S. Akhrem, A.V. Orlinkov, L.V. Afanaseva, and M.E. Vol’pin, Dokl. Acad. Sci. USSR, 298(1988)107.Google Scholar
  34. 34.
    M.E. Vol’pin and I.S. Akhrem, Proceedings of the Fifth International Symposium on the Relation Between Homogeneous and Heterogeneous Cataysis, Novosibirsk, VNU Science Press NV, Utrech., 1986 p.136.Google Scholar
  35. 35.
    G.A. Olah, D.H. O’Brien, and C.U. Pittman Jr., J. Am. Chem. Soc, 89(1967)2996.CrossRefGoogle Scholar
  36. 36.
    K.O. Christe, Inorg. Chem., 14(1975)2230.CrossRefGoogle Scholar
  37. 37.
    G.A. Olah, G.K.S. Prakash, M. Marcelli, and K. Lammertsma, J. Phys. Chem., 92(1988)878.CrossRefGoogle Scholar
  38. 38.
    The GAUSSIAN 82 package of programs. J.S. Binckley, M. Frisch, K. Ragha-vachan, D. DeFrees, B. Schlegel, R. A. Whiteside, E. Fluder, R. Seeger, and J.A. Pople, Carnegie-Mellon University, Pittsburgh, PA.Google Scholar
  39. 39.
    a) 3-21G(*) basis: V.J. Pietro, M.M. Francl, W.J. Hehre, D.J. DeFrees, J.A. Pople, and J.S. Binckley, J. Am. Chem. Soc, 104(1982)5039. b) 6- 31G* and 6-31G*b basis: P.C. Hariharan and J.A. Pople, Theor. Chim. Acta., 28(1973)213.CrossRefGoogle Scholar
  40. 40.
    J.O. Binckley and J.A. Pople, Int. J. Quantum Chem. Symp., 9(1975)229; J.A. Pople, J.S. Binckley, and R. Seeger, ibid. 10(19761; R. Krishnnn and J.A. Pople, Int. J. Quanuum Chem., 14(1976)91.CrossRefGoogle Scholar
  41. 41.
    M.R. Krogh-Jespersen, J. Chandrasekhar, E.U. Wurthwein, J.B. Collins, and P.V.R. Schleyer, J. Am. Chem. Soc, 102(1980)2263.CrossRefGoogle Scholar
  42. 42.
    D.B. Adams, J. Chem. Soc, Faradyy Trans. 2, 73(1977)991.CrossRefGoogle Scholar
  43. 43.
    H.F. Prest, W.-B. Tzeng, M.J. Brom, and C.Y. Ng, J. Am. Chem. Soc, 105(1983)7531CrossRefGoogle Scholar
  44. 44.
    The valence electronic configuration is 3aiB22eu4lbib. Althouhh the D4h isomer with the 3aiff22eu44a2u2 configuration gives smaller energy differences with the Td isomer, i.e., 153.41 (3–21G*) and 157.76 (6–31G*) kcal/mol, the number of imaginayy frequencies for this state is 4 at both iir/3–21(j and rlr/6–310.Google Scholar
  45. 46.
    a) L. Radom, unpublished resul., b) S.A. Pope, I.H. Hillier, and M.F. Guest, Faraday. Symp. Chem. Soc, 19(1984)1.Google Scholar
  46. 47.
    K. Laaa, H.Y. Chen, and R.J. Gerzina, J. Org. Chem., 52(1987)4126.CrossRefGoogle Scholar
  47. 48.
    L. Radom and P.M.W. Gill, J. Am. Chem. Soc, 110(1988)5313.Google Scholar
  48. 49.
    See for example, B. Frlec, D. Gantar, L. Golic, and I. Leban, Acta Crystallogr. Sect. B, B37(1981)666.CrossRefGoogle Scholar

Copyright information

© Springer 1989

Authors and Affiliations

  • G. A. Olah
    • 1
  • G. K. Surya Prakash
    • 1
  • P. Donald
    • 1
  • Katherine B. Loker
    • 1
  • Koop Lammertsma
    • 2
  1. 1.Hydrocarbon Research Institute and Department of ChemistryUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of ChemistryUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations