Advertisement

Research on Chemical Intermediates

, Volume 34, Issue 5–7, pp 603–615 | Cite as

Liquid-phase hydrogenation of alkenes and aromatic compounds with Pd-loaded oxidized diamond catalyst

  • Na-Oki Ikenaga
  • Tomonari Kiyomi
  • Itaru Yonezawa
  • Chieko Yukawa
  • Toshimitsu Suzuki
Article

Abstract

Hydrogenation reactions of alkenes (cyclohexene, ethyl acrylate, styrene and 1,5-cyclooctadiene) and aromatic compounds (o-, m- and p-xylene) were carried out in order to examine the activity of palladium-loaded surface-oxidized diamond (Pd/O-Dia) catalyst in liquid-phase hydrogenation. The catalytic performance was compared to commercial palladium-loaded activated carbon (Pd/C) catalyst. The catalyst activities were evaluated by conversions of reactants and H2 uptake rates in the early stage of the reaction. In all the hydrogenation reactions of alkenes and aromatic compounds, the activity of Pd/O-Dia was almost the same as or slightly higher than that of Pd/C. Dispersion of Pd metal was measured by a CO-pulsed adsorption technique and TEM observations of the catalysts. Pd dispersions were on the same order of magnitude according to the CO-pulsed adsorption technique, although the Pd/C catalyst had a higher surface area (718 m2/g) than that of Pd/O-Dia (23 m2/g). The Pd particle sizes on O-Dia measured by TEM observation were slightly smaller than those on the activated carbon. Such highly dispersed Pd particles on O-Dia would contribute to higher activity for the hydrogenation reaction of alkenes and aromatic compounds.

Keywords

Oxidized diamond palladium hydrogenation alkene aromatic compound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Fieser, in: Fieser and Fieser’s Reagents for Organic Synthesis, M. Fieser and L. F. Fieser (Eds), Vol. 17, p. 255. Wiley, New York, NY (1994).Google Scholar
  2. 2.
    I. T. Horvath (Ed.), in: Encyclopedia of Catalysis, Vol. 4, p. 17. Wiley, New York, NY (2002).Google Scholar
  3. 3.
    T. Lopez, M. Asomoza, P. Bosch, E. Garcia-Figueroa and R. Gomez, J. Catal. 138, 463 (1992).CrossRefGoogle Scholar
  4. 4.
    I. Palinko, Appl. Catal. A 126, 39 (1995).CrossRefGoogle Scholar
  5. 5.
    L. Guczi, A. Horvath, A. Beck and A. Sarkany, Stud. Surface Sci. Catal. 145, 351 (2003).CrossRefGoogle Scholar
  6. 6.
    K. J. Stanger, Y. Tang, J. Anderegg and R. J. Angelici, J. Mol. Catal. A 202, 147 (2003).CrossRefGoogle Scholar
  7. 7.
    O. Dominguez-Quintero, S. Martinez, Y. Henriquez, L. D’Ornelas, H. Krentzien and J. Osuna, J. Mol. Catal. A 197, 185 (2003).CrossRefGoogle Scholar
  8. 8.
    T. A. Nijhuis, G. van Koten and J. A. Moulijn, Appl. Catal. A 238, 259 (2003).CrossRefGoogle Scholar
  9. 9.
    J. Panpranot, O. Tangjitwattakorn, P. Praserthdam and J. G. Goodwin Jr., Appl. Catal. A 292, 322 (2005).CrossRefGoogle Scholar
  10. 10.
    S. Sato, R. Takahashi, T. Sodesawa and M. Koubata, Appl. Catal. A 284, 247 (2005).CrossRefGoogle Scholar
  11. 11.
    P. A. Robles-Dutenhefner, M. G. Speziali, E. M. B. Sousa, E. N. dos Santos and E. V. Gusevskaya, Appl. Catal. A 295, 52 (2005).CrossRefGoogle Scholar
  12. 12.
    T. Yuan and W. D. Marshall, J. Hazard. Mater. B 126, 149 (2005).CrossRefGoogle Scholar
  13. 13.
    A. F. Perez-Cadenas, M. M. P. Zieverink, F. Kapteijn and J. A. Moulijn, Catal. Today 105, 623 (2005).CrossRefGoogle Scholar
  14. 14.
    A. F. Perez-Cadenas, M. M. P. Zieverink, F. Kapteijn and J. A. Moulijn, Carbon 44, 173 (2006).CrossRefGoogle Scholar
  15. 15.
    P. Tribolet and L. Kiwi-Minsker, Catal. Today 105, 337 (2005).CrossRefGoogle Scholar
  16. 16.
    A. Corma, H. Garcia and A. Leyva, J. Mol. Catal. A 230, 97 (2005).CrossRefGoogle Scholar
  17. 17.
    W. Xia, O. F.-K. Schluter, C. Liang, M. W. E. van den Berg, M. Guraya and M. Muhler, Catal. Today 102–103, 34 (2005).CrossRefGoogle Scholar
  18. 18.
    A. Dandekar, R. T. K. Baker and M. A. Vannice, J. Catal. 184, 421 (1999).CrossRefGoogle Scholar
  19. 19.
    H. Nishimoto, K. Nakagawa, N. Ikenaga, M. Nishitani-Gamo, T. Ando and T. Suzuki, Appl. Catal. A 264, 65 (2004).CrossRefGoogle Scholar
  20. 20.
    K. Nakagawa, C. Kajita, N. Ikenaga, T. Suzuki, T. Kobayashi, M.-N. Gamo and T. Ando, J. Phys. Chem. B 107, 4048 (2003).CrossRefGoogle Scholar
  21. 21.
    T. Shimamura, K. Okumura, K. Nakagawa, T. Ando, N. Ikenaga and T. Suzuki, J. Mol. Catal. A 211, 97 (2004).CrossRefGoogle Scholar
  22. 22.
    K. Okumura, K. Nakagawa, T. Shimamura, N. Ikenaga, M.-N. Gamo, T. Ando, T. Kobayashi and T. Suzuki, J. Phys. Chem. B 107, 13419 (2003).CrossRefGoogle Scholar
  23. 23.
    H. Matsumura, K. Okumura, T. Shimamura, N. Ikenaga, T. Miyake and T. Suzuki, J. Mol. Catal. A 250, 122 (2006).CrossRefGoogle Scholar
  24. 24.
    K. Nakagawa, C. Kajita, N. Ikenaga, T. Kobayashi, M.-N. Gamo, T. Ando and T. Suzuki, Chem. Lett. 1100 (2000).Google Scholar
  25. 25.
    F. C. C. Moura, E. N. dos Santos, R. M. Lago, M. D. Vargas and M. H. Araujo, J. Mol. Catal. A 226, 243 (2005).CrossRefGoogle Scholar
  26. 26.
    M. V. Rahaman and M. A. Vannice, J. Catal. 127, 267 (1991).CrossRefGoogle Scholar
  27. 27.
    M. A. Keane, J. Catal. 166, 347 (1997).CrossRefGoogle Scholar
  28. 28.
    S. Smeds, D. Murzin and T. Salmi, Appl. Catal. A 150, 115 (1997).CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Na-Oki Ikenaga
    • 1
  • Tomonari Kiyomi
    • 1
  • Itaru Yonezawa
    • 1
  • Chieko Yukawa
    • 1
  • Toshimitsu Suzuki
    • 1
  1. 1.Department of Chemical EngineeringKansai UniversitySuita, OsakaJapan

Personalised recommendations