Research on Chemical Intermediates

, Volume 34, Issue 4, pp 381–392 | Cite as

Photodegradation of methylene blue in water, a standard method to determine the activity of photocatalytic coatings?

  • Jessica Tschirch
  • Ralf Dillert
  • Detlef Bahnemann
  • Bernd Proft
  • Andreas Biedermann
  • Bernhard Goer


The degradation of methylene blue (MB) in aqueous solutions has been re-examined as a method to characterize the photocatalytic activity of transparent TiO2 coatings. Increasing irradiation intensities leads to a change in the observed kinetic behavior from zero-order to pseudo-first-order regarding the concentration of MB. This is due to a diffusion inhibition of MB. In order to obtain data within a zero-order kinetic regime at an initial MB concentration of 10 μmol/l and, thus, to avoid the diffusion control, irradiation intensities below E=5 W/m2 for substrates comprising higher photonic efficiencies than ζ=0.09% have to be applied. Recommendations for a standard protocol are given.


Photodegradation methylene blue photocatalysis TiO2 coatings kinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev. 95, 69 (1995).CrossRefGoogle Scholar
  2. 2.
    A. Fujishima, K. Hashimoto and T. Watanabe, TiO 2 Photocatalysis, Fundamentals and Applications. BKC, Tokyo (1999).Google Scholar
  3. 3.
    D. M. Blake, Bibliography of Work on the Heterogeneous Photo catalytic Removal of Hazardous Compounds from Water and Air, NREL/TP-570-26797, Update Number 4. National Renewable Energy Laboratory, Boulder, CO (2001).Google Scholar
  4. 4.
    M. Kaneko and I. Okura, Photocatalysis, Science and Technology. Kodansha, Tokyo (2002).Google Scholar
  5. 5.
    D. Bahnemann, Sol. Energ. 77, 445 (2004).CrossRefGoogle Scholar
  6. 6.
    A. Mills and S.-K. Lee, J. Photochem. Photobiol. A: Chem. 152, 233 (2002).CrossRefGoogle Scholar
  7. 7.
    N. Serpone and A. V. Emeline, Int. J. Photoenerg. 4, 91 (2002).CrossRefGoogle Scholar
  8. 8.
    J.E. Valladares and J.R. Bolton, in: Photocatalytic Purification and Treatment of Water and Air, D.F. Ollis and H. Al-Ekabi (Eds), p. 111. Elsevier, Amsterdam (1993).Google Scholar
  9. 9.
    Z. Shi, Y. Fan, M. Xu and J. Shi, Chin. J. Chem. Eng. 8, 15 (2000).Google Scholar
  10. 10.
    Y. Ohko, Y. Utsumi, C. Niwa, T. Tatsuma, K. Kobayakawa, Y. Satoh, Y. Kubota and A. Fujishima, J. Biomed. Mater. Res. 58, 97 (2000).CrossRefGoogle Scholar
  11. 11.
    Y. Kotani, T. Matoda, A. Matsuda, T. Kogure, M. Tatsumisago and T. Minami, J. Mater. Chem., 11, 2045 (2001).CrossRefGoogle Scholar
  12. 12.
    A. Mills and J. Wang, J. Photochem. Photobiol. A: Chem. 127, 123 (1999).CrossRefGoogle Scholar
  13. 13.
    B.-N. Lee, W.-D. Liaw and J.-C. Lou, Environ. Eng. Sci. 16, 165 (1999).CrossRefGoogle Scholar
  14. 14.
    S. Prahl, Optical Absorption Spectra of Methylene Blue. Oregon Medical Laser Center, Beaverton, OR (2007) Avalaible online at Scholar
  15. 15.
    A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard and J.-M. Herrmann, Appl. Catal. B: Environ. 31, 145 (2001).CrossRefGoogle Scholar
  16. 16.
    Y. Yang, Q. Wu, Y. Guo, C. Hu and E. Wang, J. Mol. Catal. A: Chem. 225, 203 (2005).CrossRefGoogle Scholar
  17. 17.
    G. Wedler, Lehrbuch der Physikalischen Chemie, 2nd edn. Verlag Chemie, Weinheim (1985).Google Scholar
  18. 18.
    P.W. Atkins, Physical Chemistry, 3rd edn. Oxford University Press, Oxford (1986).Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Jessica Tschirch
    • 1
  • Ralf Dillert
    • 1
  • Detlef Bahnemann
    • 1
  • Bernd Proft
    • 2
  • Andreas Biedermann
    • 3
  • Bernhard Goer
    • 4
  1. 1.Institut für Technische ChemieLeibniz Universität Hannover, GermanyHannoverGermany
  2. 2.Sachtleben ChemieDuisburgGermany
  3. 3.Titam OberflächenschutzOstrachGermany
  4. 4.Pilkington Deutschland AGGelsenkirchenGermany

Personalised recommendations