Research on Chemical Intermediates

, Volume 33, Issue 6, pp 487–500 | Cite as

Structural characterization and photocatalytic properties of novel Bi2FeVO7

  • Jingfei Luan
  • Hongling Cai
  • Xiping Hao
  • Jibiao Zhang
  • Guoyou Luan
  • Xiaoshan Wu
  • Zhigang Zou


Bi2FeVO7 was prepared by a solid-state reaction technique for the first time and the structural and photocatalytic properties of Bi2FeVO7 were studied. The results shows that this compound crystallized in the tetragonal crystal system with space group I4/mmm. Moreover, the band gap of Bi2FeVO7 was estimated to be about 2.22(6) eV. For the photocatalytic water splitting reaction, H2 or O2 evolution was observed from pure water with Bi2FeVO7 as the photocatalyst by ultraviolet light irradiation. Degradation of aqueous methylene blue (MB) dye by photocatalytic way over this compound was further studied under visible light irradiation. Bi2FeVO7 shows higher catalytic activity compared to TiO2 (P-25) for MB photocatalytic degradation under visible light irradiation. Complete removal of aqueous MB was realized after visible light irradiation for 170 min with Bi2FeVO7 as the photocatalyst. The reduction of the total organic carbon (TOC) and the formation of inorganic products, SO 4 2− and NO 3 revealed the continuous mineralization of aqueous MB during the photocatalytic course.


Photocatalyst Bi2FeVO7 structural characterization photocatalytic properties photocatalytic water splitting reaction photocatalytic degradation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Honda and A. Fujishima, Nature 238, 37 (1972).CrossRefGoogle Scholar
  2. 2.
    M. Anpo, S. Dohshi, M. Kitano, Y. Hu, M. Takeuchi and M. Matsuoka, Annu. Rev. Mater. Res. 35, 1 (2005).CrossRefGoogle Scholar
  3. 3.
    M. Anpo, Top. Catal. 35, 195 (2005).CrossRefGoogle Scholar
  4. 4.
    B. Neppolian, H. Yamashita, Y. Okada, H. Nishijima and M. Anpo, Catal. Lett. 105, 111 (2005).CrossRefGoogle Scholar
  5. 5.
    S. Dohshi, M. Anpo, S. Okuda and T. Kojima, Top. Catal. 35, 327 (2005).CrossRefGoogle Scholar
  6. 6.
    M. Takeuchi, K. Sakamoto, G. Martra, S. Coluccia and M. Anpo, J. Phys. Chem. B 109, 15422 (2005).Google Scholar
  7. 7.
    M. Kitano, M. Takeuchi, M. Matsuoka, J. M. Thomas and M. Anpo, Chem. Lett. 34, 616 (2005).CrossRefGoogle Scholar
  8. 8.
    M. Takeuchi, G. Martra, S. Coluccia and M. Anpo, J. Phys. Chem. B 109, 7387 (2005).CrossRefGoogle Scholar
  9. 9.
    N. U. Zhanpeisov and M. Anpo, Theor. Chem. Accts. 114, 235 (2005).CrossRefGoogle Scholar
  10. 10.
    Z. Zou, J. Ye, K. Sayama and H. Arakawa, Nature 414, 625 (2001).CrossRefGoogle Scholar
  11. 11.
    Z. Zou, J. Ye and H. Arakawa, J. Phys. Chem. B 106, 13098 (2002).Google Scholar
  12. 12.
    Z. Zou, J. Ye and H. Arakawa, J. Mater. Sci. Lett. 19, 1909 (2000).CrossRefGoogle Scholar
  13. 13.
    M. Anpo and M. Takeuchi, J. Catal. 216, 505 (2003).CrossRefGoogle Scholar
  14. 14.
    S. Malato, J. Blanco, J. Cáceres, A. R. Fernández-Alba, A. Agüera and A. Rodríguez, Catal. Today 76, 209 (2002).CrossRefGoogle Scholar
  15. 15.
    T. Kodama, Y. Isobe, Y. Kondoh, S. Yamaguchi and K. I. Shimizu, Energy 29, 895 (2004).CrossRefGoogle Scholar
  16. 16.
    G. Q. Guan, T. Kida and A. Yoshida, Appl. Catal. B: Environ. 41, 387 (2003).CrossRefGoogle Scholar
  17. 17.
    G. Q. Guan, T. Kida, T. Harada, M. Isayama and A. Yoshida, Appl. Catal. A: Gen. 249, 11 (2003).CrossRefGoogle Scholar
  18. 18.
    Z. Zou, J. Ye, K. Oka and Y. Nishihara, Phys. Rev. Lett. 80, 1074 (1998).CrossRefGoogle Scholar
  19. 19.
    J. Tang, Z. Zou, J. Yin and J. Ye, Chem. Phys. Lett. 382, 175 (2003).CrossRefGoogle Scholar
  20. 20.
    J. Matos, J. Laine and J. M. Herrmann, J. Catal. 200, 10 (2001).CrossRefGoogle Scholar
  21. 21.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science 293, 269 (2001).CrossRefGoogle Scholar
  22. 22.
    F. B. Li and X. Z. Li, Appl. Catal. A 228, (2002).Google Scholar
  23. 23.
    F. B. Li and X. Z. Li, Chemosphere 48, 1103 (2002).CrossRefGoogle Scholar
  24. 24.
    D. Bernard, J. Pannetier and J. Lucas, Ferroelectrics 21, 429 (1978).Google Scholar
  25. 25.
    G. I. Golovshchikove, V. A. Isupov, A. G. Tutov, A. G. Nikove, I. E. Myl, P. A. Nikitina and O. I. Tulinova, Sov. Phys. Solid State 14, 2539 (1973).Google Scholar
  26. 26.
    F. Izumi, J. Crystallogr. Ass. Jpn. 27, 23 (1985).Google Scholar
  27. 27.
    J. Xu, T. Emge, K. V. Ramanujachary, P. Hohn and M. Greenblatt, J. Solid State Chem. 125, 192 (1996).CrossRefGoogle Scholar
  28. 28.
    M. A. Butler, J. Appl. Phys. 48, 1914 (1977).CrossRefGoogle Scholar
  29. 29.
    J. Tauc, R. Grigorovici and A. Vancu, Phys. Stat. Sol. 15, 627 (1966).CrossRefGoogle Scholar
  30. 30.
    J. H. Wang, Z. G. Zou and J. H. Ye, Mater. Sci. Forum 423, 485 (2003).CrossRefGoogle Scholar
  31. 31.
    H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guilard and J. M. Herrmann, Appl. Catal. B 39, 75 (2002).CrossRefGoogle Scholar
  32. 32.
    M. Wiegel, W. Middel and G. Blasse, J. Mater. Chem. 5, 981 (1995).CrossRefGoogle Scholar
  33. 33.
    M. Oshikiri, M. Boero, J. Ye, Z. Zou and G. Kido, J. Chem. Phys. 117, 7313 (2002).CrossRefGoogle Scholar

Copyright information

© VSP 2007

Authors and Affiliations

  • Jingfei Luan
    • 1
  • Hongling Cai
    • 2
  • Xiping Hao
    • 2
  • Jibiao Zhang
    • 1
  • Guoyou Luan
    • 3
  • Xiaoshan Wu
    • 2
  • Zhigang Zou
    • 4
  1. 1.State Key Laboratory of Pollution Control and Resource Reuse, School of the EnvironmentNanjing UniversityNanjingPeople’s Republic of China
  2. 2.National Laboratory of Solid State MicrostructuresNanjing UniversityNanjingPeople’s Republic of China
  3. 3.State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianPeople’s Republic of China
  4. 4.Eco-Materials and Renewable Energy Research CenterNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations