Research on Chemical Intermediates

, Volume 33, Issue 8, pp 739–747 | Cite as

Trapped molecular species in N-doped TiO2

  • Stefano Livraghi
  • Maria Cristina Paganini
  • Mario Chiesa
  • Elio Giamello
Article

Abstract

Nitrogen-doped TiO2, a novel photocatalyst active in the decomposition of organic pollutants using visible light, contains several different types of paramagnetic centers. These are molecular species, such as NO and NO2 radicals and other species, deeply interacting with the TiO2 structure. All or part of these species is related to specific properties of the solid. Electron paramagnetic resonance has been employed to characterize the N-containing paramagnetic species present in N-doped anatase TiO2 powders obtained via sol-gel synthesis. In the present work attention is focused on molecular species generated during the synthesis process and segregated in cavities of the TiO2 structure.

Keywords

N-doped TiO2 EPR NO NO2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science 293, 269 (2001).CrossRefGoogle Scholar
  2. 2.
    T. Lindgren, J. M. Mwabora, E. Avendano, J. Jonsson, A. Hoel, C. G. Granqvist and S. E. Lindquist, J. Phys. Chem. B 107, 5709 (2003).CrossRefGoogle Scholar
  3. 3.
    H. Irie, Y. Watanabe and K. Hashimoto, J. Phys. Chem. B 107, 5483 (2003).CrossRefGoogle Scholar
  4. 4.
    C. Di Valentin, G. Pacchioni and A. Selloni, Phys. Rev. B 70 (2004).Google Scholar
  5. 5.
    H. Irie, S. Washizuka, N. Yoshino and K. Hashimoto, Chem. Commun., 1298 (2003).Google Scholar
  6. 6.
    S. Sakthivel and H. Kisch, ChemPhysChem 4, 487 (2003).CrossRefGoogle Scholar
  7. 7.
    A. Adamski, T. Spalek and Z. Sojka, Res. Chem. Intermed. 29, 793 (2003).CrossRefGoogle Scholar
  8. 8.
    S. Livraghi, A. Votta, M. C. Paganini and E. Giamello, Chem. Commun., 498 (2005).Google Scholar
  9. 9.
    Y. B. Taarit, C. Naccache and B. Imelik, J. Chem. Phys., 70, 728 (1973).Google Scholar
  10. 10.
    J. H. Lunsford, J. Phys. Chem. 72, 2141 (1968).CrossRefGoogle Scholar
  11. 11.
    J. H. Lunsford, J. Chem. Phys. 46, 4347 (1967).CrossRefGoogle Scholar
  12. 12.
    D. Biglino, H. T. Li, R. Erickson, A. Lund, H. Yahiro and M. Shiotani, Phys. Chem. Chem. Phys. 1, 2887 (1999).CrossRefGoogle Scholar
  13. 13.
    J. W. Whittaker, J. Chem. Educ. 68, 421 (1991).CrossRefGoogle Scholar
  14. 14.
    P. W. Atkins, N. Keen and M. C. R. Symons, J. Chem. Soc. 28, 2873 (1962).CrossRefGoogle Scholar
  15. 15.
    C. K. Jen, S. N. Foner, E. L. Cochran and V. A. Bowers, Phys. Rev. 112, 11699 (1958).CrossRefGoogle Scholar
  16. 16.
    H. Zeld and R. Livingston, J. Chem. Phys. 35, 563 (1961).CrossRefGoogle Scholar
  17. 17.
    P. H. Kasai and R. J. B. Bishop, J. Am. Chem. Soc. 94, 5560 (1972).CrossRefGoogle Scholar
  18. 18.
    C. Di Valentin, G. Pacchioni, A. Selloni, S. Livraghi and E. Giamello, J. Phys. Chem. B 109, 11414 (2005).Google Scholar

Copyright information

© VSP 2007

Authors and Affiliations

  • Stefano Livraghi
    • 1
  • Maria Cristina Paganini
    • 1
  • Mario Chiesa
    • 1
  • Elio Giamello
    • 1
  1. 1.Dipartimento di Chimica IFMUniversità di Torino, NIS, Nanostructured Interfaces and Surfaces (Centre of Excellence)TorinoItaly

Personalised recommendations