Research on Chemical Intermediates

, Volume 33, Issue 8, pp 807–823 | Cite as

Evaluating π-π stacking effects in macrocyclic transition metal complexes using EPR techniques

  • S. van DoorslaerEmail author
  • D. M. Murphy
  • I. A. Fallis


The HYSCORE spectra for two different macrocyclic transition metal complexes, namely cobalt tetraphenylporphyrin (CoTPP) and a copper Salen derivative ([Cu(1)]), were examined in relation to their interactions with pyridine (Py) and methylbenzyl amine (MBA), respectively. In both cases weak hyperfine interactions were detected by HYSCORE, but the origin of these interactions was found to originate from completely different effects. In the CoTPPpy adduct, with axial coordination of the substrate (pyridine) to the metal centre, weak couplings from the pyrrole nitrogens of a neighbouring porphyrin complex were identified, and confirmed through a series of isotopic labelling and dilution experiments. This result represents the first ever identification by HYSCORE of π-π interactions between such porphyrin complexes in solution. In the [Cu(1)]MBA adduct, again with axial coordination of the substrate (MBA) to the copper centre, weak couplings were also identified in the HYSCORE spectra, which could easily be misinterpreted as arising from intermolecular interactions between adjacent ligands. However, the origin of these couplings was clearly demonstrated to arise from intramolecular 13C-ligand interactions. These results demonstrate not only the sensitivity of the HYSCORE technique for detection of weak inter- and intra-molecular interactions in macrocyclic transition metal complexes, but additionally the need to consider dilution effects in the spectral assignments.


HYSCORE ENDOR metal complexes π stacking homogeneous catalysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Schweiger and G. Jeschke, Principles of Pulsed Electron Paramagnetic Resonance. Oxford University Press, New York, NY (2001).Google Scholar
  2. 2.
    W. L. Hubbell, D. S. Cafiso and C. Altenbach, Nature Struct. Biol. 7, 735 (2000).CrossRefGoogle Scholar
  3. 3.
    C. Finazzo, C. Calle, S. Stoll, S. Van Doorslaer and A. Schweiger, Phys. Chem. Chem. Phys. 8, 1942 (2006).CrossRefGoogle Scholar
  4. 4.
    D. M. Murphy, I. A. Fallis, R. D. Farley, R. J. Tucker, K. L. Avery and D. J. Willock, Phys. Chem. Chem. Phys. 4, 4937 (2002).CrossRefGoogle Scholar
  5. 5.
    R. J. Tucker, I. A. Fallis, R. D. Farley, D. M. Murphy and D. J. Willock, Chem. Phys. Lett. 380, 758 (2003).CrossRefGoogle Scholar
  6. 6.
    I. A. Fallis, D. M. Murphy, D. J. Willock, R. J. Tucker, R. D. Farley, R. Jenkins and R. R. Stevens, J. Am. Chem. Soc. 126, 15660 (2004).Google Scholar
  7. 7.
    T. Tanaka, B. Saito and T. Katsuki, Tetrahedron Lett. 43, 3259 (2002).CrossRefGoogle Scholar
  8. 8.
    M. S. Sigman and E. N. Jacobsen, J. Am. Chem. Soc. 120, 5315 (1998).CrossRefGoogle Scholar
  9. 9.
    W. Zhang, L. J. Loebach, S. R. Wilson and E. N. Jacobsen, J. Am. Chem. Soc. 112, 2801 (1990).CrossRefGoogle Scholar
  10. 10.
    H. Sakaki, R. Irie and T. Katsuki, Synlett 4, 300 (1993).CrossRefGoogle Scholar
  11. 11.
    X.-B. Lu, L. Shi, Y.-M. Wang, R. Zhang, Y.-J. Zhang, X.-J. Peng, Z.-C. Zhang and B. Li, J. Am. Chem. Soc. 128, 1664 (2006).CrossRefGoogle Scholar
  12. 12.
    R. Irie, K. Noda, Y. Ito, T. Matsumoto and T. Katsuki, Tetrahedron Lett. 31, 7345 (1990).CrossRefGoogle Scholar
  13. 13.
    W. Zhang and E. N. Jacobsen, J. Org. Chem. 56, 2296 (1991).CrossRefGoogle Scholar
  14. 14.
    E. N. Jacobsen, W. Zhang, A. Muci, J. R. Ecker and L. Deng, J. Am. Chem. Soc. 113, 7063 (1991).CrossRefGoogle Scholar
  15. 15.
    S. E. Schaus, B. D. Brandes, J. F. Larrow, M. Tokunaga, K. B. Hansen, A. E. Gould, M. E. Furrow and E. N. Jacobsen, J. Am. Chem. Soc. 124, 1307 (2002).CrossRefGoogle Scholar
  16. 16.
    L. R. Milgrom, The Colours of Life: An Introduction to the Chemistry of Porphyrins and Related Compounds. Oxford University Press, Oxford (1997).Google Scholar
  17. 17.
    J. P. Collman, J. T. McDevitt, C. R. Leidner, G. T. Yee, J. B. Torrance and W. A. Little, J. Am. Chem. Soc. 109, 4606 (1987).CrossRefGoogle Scholar
  18. 18.
    T. C. Bruice, Acc. Chem. Res. 24, 243 (1991).CrossRefGoogle Scholar
  19. 19.
    C. M. Drain, J. D. Batteas, G. W. Flynn, T. Milk, N. Chi, D. G. Yablon and H. Sommers, Proc. Natl. Acad. Sci. USA 99, 6498 (2002).CrossRefGoogle Scholar
  20. 20.
    J.-H. Fuhrhop, U. Bindig, B. Rosengarten and U. Siggel, Polym. Adv. Technol. 6, 168 (1995).CrossRefGoogle Scholar
  21. 21.
    C. A. Hunter and J. K. M. Sanders, J. Am. Chem. Soc. 112, 5525 (1990).CrossRefGoogle Scholar
  22. 22.
    J. F. Larrow and E. N. Jacobsen, Org. Synth. 75, 1 (1998).Google Scholar
  23. 23.
    P. Höfer, A. Grupp, H. Nebenführ and M. Mehring, Chem. Phys. Lett. 132, 279 (1986).CrossRefGoogle Scholar
  24. 24.
    S. Stoll and A. Schweiger, J. Magn. Reson. 178, 42 (2006).CrossRefGoogle Scholar
  25. 25.
    Z. Madi, S. Van Doorslaer and A. Schweiger, J. Magn. Reson. 181, 154 (2002).Google Scholar
  26. 26.
    S. Van Doorslaer, R. Bachmann and A. Schweiger, J. Phys. Chem. 103, 5446 (1997).Google Scholar
  27. 27.
    F. A. Walker, J. Am. Chem. Soc. 92, 4235 (1970).CrossRefGoogle Scholar
  28. 28.
    G. P. Däges and J. Hütterman, J. Phys. Chem. 96, 4787 (1992).CrossRefGoogle Scholar
  29. 29.
    S. Van Doorslaer, G. Jeschke, B. Epel, D. Goldfarb, R.-A. Eichel, B. Kräutler and A. Schweiger, J. Am. Chem. Soc. 125, 5915 (2003).CrossRefGoogle Scholar
  30. 30.
    S. A. Dikanov, Yu. D. Tsvetkov, M. K. Bowman and A. V. Astashkin, Chem. Phys. Lett. 90, 149 (1982).CrossRefGoogle Scholar
  31. 31.
    S. Kita, M. Hashimote and M. Iwaizumi, Inorg. Chem. 18, 3432 (1979).CrossRefGoogle Scholar
  32. 32.
    A. Schweiger, Struct. Bonding 51, 1 (1982).CrossRefGoogle Scholar
  33. 33.
    S. Stoll, C. Calle, G. Mitrikas and A. Schweiger, J. Magn. Reson. 177, 93 (2005).CrossRefGoogle Scholar
  34. 34.
    Y.-N. Hsieh, G. V. Rubenacker, C. P. Cheng and T. L. Brown, J. Am. Chem. Soc. 99, 1384 (1977).CrossRefGoogle Scholar
  35. 35.
    A. Schweiger and H. H. Gunthard, Chem. Phys. 32, 35 (1978).CrossRefGoogle Scholar
  36. 36.
    S. R. Rabbani, D. T. Edmonds and P. Gosling, J. Magn. Reson. 72, 230 (1987).Google Scholar
  37. 37.
    R. Guilard, N. Senglet, Y. H. Lui, D. Sazou, E. Findsen, D. Faure, T. Des Courieres and K. M. Kadish, Inorg. Chem. 30, 1898 (1991).CrossRefGoogle Scholar
  38. 38.
    J. A. De Bolfo, T. D. Smith, J. F. Boas and J. R. Pilbrow, J. Chem. Soc. Dalton Trans., 1523 (1975).Google Scholar
  39. 39.
    J. Lewinski, J. Zachara, I. Justyniak and M. Dranka, Coord. Chem. Rev. 249, 1185 (2005).CrossRefGoogle Scholar
  40. 40.
    K. Miyamura, A. Mihara, T. Fujii, Y. Gohshi and Y. Ishii, J. Am. Chem. Soc. 117, 2377 (1995).CrossRefGoogle Scholar
  41. 41.
    L. P. C. Nielsen, C. P. Stevenson, D. G. Blackmond and E. N. Jacobsen, J. Am. Chem. Soc. 126, 1360 (2004).CrossRefGoogle Scholar
  42. 42.
    E. N. Jacobsen, Acc. Chem. Res. 33, 421 (2000).CrossRefGoogle Scholar
  43. 43.
    S. Van Doorslaer and A. Schweiger, J. Phys. Chem. B 104, 2919 (2000).CrossRefGoogle Scholar
  44. 44.
    E. F. Murphy, D. Ferri, A. Baiker, S. Van Doorslaer and A. Schweiger, Inorg. Chem. 42, 2559 (2003).CrossRefGoogle Scholar

Copyright information

© VSP 2007

Authors and Affiliations

  • S. van Doorslaer
    • 1
    Email author
  • D. M. Murphy
    • 2
  • I. A. Fallis
    • 2
  1. 1.SIBAC laboratory — Department of PhysicsUniversity of AntwerpWilrijkBelgium
  2. 2.School of ChemistryCardiff UniversityCardiffUK

Personalised recommendations