Research on Chemical Intermediates

, Volume 33, Issue 3–5, pp 465–479 | Cite as

Photoactivity of nanostructured TiO2 catalysts in aqueous system and their surface acid-base, bulk and textural properties

  • M. Addamo
  • M. Del Arco
  • M. Bellardita
  • D. Carriazo
  • A. Di Paola
  • E. García-López
  • G. Marci
  • C. Martín
  • L. Palmisano
  • V. Rives


This work reports on the characterisation and determintion of the photocatalytic activity of some TiO2 catalysts prepared using TiCl4 as precursor. The samples, consisting of suspensions, dispersions or powders of nanonstructured anatase or rutile phases, were obtained in very mild conditions, i.e., by boiling the solution obtained after hydrolysis of TiCl4 at atmospheric pressure: it is worth noting that no calcination was necessary to obtain photoactive phases. The samples were characterised by X-ray diffraction (XRD), determination of the BET specific surface area (SSA), scanning electron microscopy (SEM) observations and diffuse reflectance spectroscopy (DRS). FT-IR spectroscopy was used to study the surface acidity of the solids. Photodegradation of 4-nitrophenol and gemfibrozil (5-(2,5-dimethylphenoxy)-2,2-dimethyl-pentanoic acid) was used as probe reactions to evaluate the photoactivity and the obtained results showed that the home prepared samples are effective to degrade both substrates. The photoreactivity results were compared to those obtained using commercial photocatalysts.


Photocatalysis photodegradation nanostructured TiO2 FT-IR characterisation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Schiavello, Heterogeneous Photocatalysis. Wiley, New York, NY (1995).Google Scholar
  2. 2.
    M. A. Fox and T. Dulay, Chem. Rev. 93, 341 (1993).CrossRefGoogle Scholar
  3. 3.
    A. L. Linsebigler, G. Lu and J. T. Yates, Chem. Rev. 95, 735 (1995).CrossRefGoogle Scholar
  4. 4.
    M. Schiavello, Photocatalysis and Environment: Trends and Applications, Kluwer, Dordrecht (1988).Google Scholar
  5. 5.
    E. Pelizzetti and N. Serpone, Photocatalysis. Fundamentals and Applications. Wiley, New York, NY (1989).Google Scholar
  6. 6.
    M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev. 95, 69 (1995).CrossRefGoogle Scholar
  7. 7.
    J. Peral, X. Domenech and D. F. Ollis, J. Chem. Technol. Biotechnol. 70, 117 (1997).CrossRefGoogle Scholar
  8. 8.
    V. Augugliaro, S. Coluccia, V. Loddo, L. Marchese, G. Martra, L. Palmisano and M. Schiavello, Appl. Catal. B: Environ. 20, 15 (1999).CrossRefGoogle Scholar
  9. 9.
    J. Maira, J. M. Coronado, V. Augugliaro, K. L. Yeung, J. C. Conesa and J. Soria, J. Catal. 202, 413 (2001).CrossRefGoogle Scholar
  10. 10.
    D. F. Ollis and H. Al-Ekabi, Photocatalytic Purification and Treatment of Water and Air. Elsevier, Amsterdam (1993).Google Scholar
  11. 11.
    V. Augugliaro, L. Palmisano, A. Sclafani, C. Minero and E. Pelizzetti, Toxicol. Environ. Chem. 16, 89 (1988).CrossRefGoogle Scholar
  12. 12.
    K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka and A. Itaya, Bull. Chem. Soc. Jpn. 58, 2015 (1985).CrossRefGoogle Scholar
  13. 13.
    A. Mills, R. H. Davies and D. Worsley, Chem. Soc. Rev. 93, 417 (1993).CrossRefGoogle Scholar
  14. 14.
    N. I. Al-Salim, S. A. Bagshaw, A. Bittar, T. Kemmitt, A. J. McQuillan, A. M. Mills and M. J. Ryan, J. Mater. Chem. 10, 2358 (2000).CrossRefGoogle Scholar
  15. 15.
    J. M. Hermann, Helv. Chim. Acta 84, 2731 (2001).CrossRefGoogle Scholar
  16. 16.
    A. Fujishima, K. Hashimoto and T. Watanabe, TiO 2 Photocatalysis: Fundamentals and Applications. BKC, Tokyo (1999).Google Scholar
  17. 17.
    I. Sopyan, M. Watanabe, S. Murasawa, K. Hashimoto and A. Fujishima, J. Photochem. Photobiol. A: Chem. 98, 79 (1996).CrossRefGoogle Scholar
  18. 18.
    A. Fujishima, T. N. Rao and D. A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev. 1, 1 (2000).CrossRefGoogle Scholar
  19. 19.
    M. Fujihira, Y. Satoh and T. Osa, Nature 293, 206 (1981).CrossRefGoogle Scholar
  20. 20.
    G. Marcì, M. Addamo, V. Augugliaro, S. Coluccia, E. García-López, V. Loddo, G. Martra, L. Palmisano and M. Schiavello, J. Photochem. Photobiol. A: Chem. 160, 105 (2003).CrossRefGoogle Scholar
  21. 21.
    C. H. Ao, S. C. Lee, C. L. Mak and L. Y. Chan, Appl. Catal. B Environ. 42, 119 (2003).CrossRefGoogle Scholar
  22. 22.
    W. W. So, S. B. Park, K. J. Kim, C. H. Shin, and S. J. Moon, J. Mater. Sci. 36, 4299 (2001).CrossRefGoogle Scholar
  23. 23.
    X. Z. Ding and X. H. Liu, Mater. Sci. Eng. A 224, 210 (1997).CrossRefGoogle Scholar
  24. 24.
    H. Jensen, K. D. Joensen, J.-E. Jørgensen, J. S. Pedersen and E. G. Søgaard, J. Nanoparticles Res. 6, 519 (2004).CrossRefGoogle Scholar
  25. 25.
    D. Beydoun, R. Amal, G. Low and S. McEvoy, J. Nanoparticles Res. 1, 439 (1999).CrossRefGoogle Scholar
  26. 26.
    J. Ovenstone, J. Mater. Sci. 36, 1325 (2001).CrossRefGoogle Scholar
  27. 27.
    Y. Li, T. J. White and S. H. Lim, J. Solid State Chem. 177, 1372 (2004).CrossRefGoogle Scholar
  28. 28.
    M. Addamo, V. Augugliaro, A. Di Paola, E. García-López, V. Loddo, G. Marcì, R. Molinari, L. Palmisano and M. Schiavello, J. Phys. Chem. B 108, 3303 (2004).CrossRefGoogle Scholar
  29. 29.
    R. Campostrini, G. Carturan, L. Palmisano, M. Schiavello and A. Sclafani, Mater. Chem. Phys. 38, 277 (1994).CrossRefGoogle Scholar
  30. 30.
    M. Addamo, V. Augugliaro, A. Di Paola, E. García-López, V. Loddo, G. Marcì and L. Palmisano, Colloid Surfaces A: Physicochem. Eng. Aspects 265, 23 (2005).CrossRefGoogle Scholar
  31. 31.
    S. Brunauer, P. H. Emmet and E. Teller, J. Am. Chem Soc. 60, 309 (1938).CrossRefGoogle Scholar
  32. 32.
    D. Dollimore and G. R. Heal, J. Appl. Chem. 14, 109 (1964).CrossRefGoogle Scholar
  33. 33.
    M. Wu, J. Long, A. Huang and Y. Luo, Langmuir 15, 8822 (1999).CrossRefGoogle Scholar
  34. 34.
    A. Pottier, C. Chanéac, E. Tronc, L. Mazerolles and J.-P. Jolivet, J. Mater. Chem. 11, 1116 (2001).CrossRefGoogle Scholar
  35. 35.
    H. Cheng, J. Ma, Z. Zhao and L. Qi, Chem. Mater. 7, 663 (1995).CrossRefGoogle Scholar
  36. 36.
    H. Yin, Y. Wada, T. Kitamura, S. Kambe, S. Murasawa, H. Mori, T. Sakata and S. Yanagida, J. Mater. Chem. 11 1694 (2001).CrossRefGoogle Scholar
  37. 37.
    R. Zhang and L. Gao, Mater. Res. Bull. 36, 1957 (2001).CrossRefGoogle Scholar
  38. 38.
    E. P. Parry, J. Catal. 2, 371 (1963).CrossRefGoogle Scholar
  39. 39.
    Y. I. Kim, S. J. Atherton, E. S. Brigham and T. E. Mallouk, J. Phys. Chem. 97, 11802 (1993).CrossRefGoogle Scholar
  40. 40.
    M. Lindner, D. W. Bahnemann, B. Hirthe and W. D. Griebler, Trans. ASME J. Solar Energ. Eng. 119, 120 (1997).CrossRefGoogle Scholar
  41. 41.
    K.-H. Wang, Y.-H. Hsieh, C.-H. Wu and C.-Y. Chang, Chemosphere 40, 389 (2000).CrossRefGoogle Scholar
  42. 42.
    K.-H. Wang, Y.-H. Hsieh, M.-Y. Chou and C.-Y. Chang, Appl. Catal. B: Environ. 21, 1 (1999).CrossRefGoogle Scholar
  43. 43.
    R. I. Bickley, T. González-Carreño, J. S. Lees, L. Palmisano and R. J. D. Tilley, J. Solid State Chem. 92, 178 (1991).CrossRefGoogle Scholar
  44. 44.
    N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti and H. Hidaka, J. Photochem. Photobiol. A: Chem. 85, 247 (1995).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • M. Addamo
    • 1
  • M. Del Arco
    • 2
  • M. Bellardita
    • 1
  • D. Carriazo
    • 2
  • A. Di Paola
    • 1
  • E. García-López
    • 1
  • G. Marci
    • 1
  • C. Martín
    • 2
  • L. Palmisano
    • 1
  • V. Rives
    • 2
  1. 1.Dipartimento di Ingegneria Chimica dei Processi e dei MaterialiUniversità di PalermoPalermoItaly
  2. 2.Departmento de Química InorgánicaUniversidad de SalamancaSalamancaSpain

Personalised recommendations