Research on Chemical Intermediates

, Volume 33, Issue 3–5, pp 251–268 | Cite as

Characterization of titanium dioxide photoactivity following the formation of radicals by EPR spectroscopy

  • V. Brezová
  • D. Dvoranová
  • A. Staško


In order to find ways to characterize oxygen-saturated aqueous TiO2 suspensions, the formation of photo-induced free radicals was followed by EPR spectroscopy, using as indicators N-oxide and nitrone spin trapping agents, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 3,3,5,5-tetramethyl-1-pyrroline N-oxide (TMPO), α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POB N), 4-(N-methylpyridyl)-N-tert-butylnitrone (MePyBN), as well as semi-stable free radicals, 4-hydroxy-2,2,6,6-tetramethylpiperidine N-oxyl (TEMPOL), cation radical of 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), diammonium salt (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH). DMPO and TMPO are efficiently oxidized to the EPR-silent products via radical in termediates. Conversely, the nitrone spin traps (POBN and MePyBN) showed selective formation of hydroxyl radical spin adducts upon continuous irradiation of oxygenated TiO2 suspensions. Their concentrations increased proportionally with the amount of photocatalyst and irradiation time. The EPR spectrum of the semi-stable free radicals TEMPOL, ABTS·+ or DPPH is gradually eliminated during irradiation, and this system represents a simple technique for the evaluation of TiO2 activity.


Titanium dioxide EPR spectroscopy free radicals hydroxyl radical spin-trapping technique TEMPOL DPPH ABTS·+ 



2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt


5,5-dimethyl-l-pyrroline N-oxide




electron paramagnetic resonance




nuclear magnetic resonance




4-hydroxy-2,2,6,6-tetramethylpiperidine N-oxyl


thin-layer chromatography


3,3,5,5-tetramethyl-l-pyrroline N-oxide




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Pelizzetti and N. Serpone (Eds), Homogeneous and Heterogeneous Photocatalysis. D. Reidel, Dordrecht (1986).Google Scholar
  2. 2.
    N. Serpone and E. Pelizzetti (Eds.), Photocatalysis, Fundamentals and Applications. Wiley, Chichester (1989).Google Scholar
  3. 3.
    D. F. Ollis and H. Al-Ekabi (Eds), Photocatalytic Purification and Treatment of Water and Air. Elsevier, Amsterdam (1993).Google Scholar
  4. 4.
    A. Fujishima, T. N. Rao and D. A. Tryk, J. Photochem. Photobiol. C: Rev. 1, 1 (2000).CrossRefGoogle Scholar
  5. 5.
    N. Serpone, G. Sauve, R. Koch, H. Tahiri, P. Pichat, P. Piccinini, E. Pelizzetti and H. Hidaka, J. Photochem. Photobiol. A: Chem. 94, 191 (1996).CrossRefGoogle Scholar
  6. 6.
    S. K. Lee and A. Mills, J. Ind. Eng. Chem. 10, 173 (2004).Google Scholar
  7. 7.
    J.-M. Herrmann, Top. Catal. 34, 49–65 (2005).CrossRefGoogle Scholar
  8. 8.
    O. Carp, C. L. Huisman and A. Reller, Prog. Solid State Chem. 32, 33 (2004).CrossRefGoogle Scholar
  9. 9.
    X. Y. Li, G. H. Chen, Y. Po-Lock and C. Kutal, J. Chem. Technol. Biotechnol. 78, 1246 (2003).CrossRefGoogle Scholar
  10. 10.
    H. Tada, T. Ishida, A. Takao, S. Ito, S. Mukhopadhyay, T. Akita, K. Tanaka and H. Kobayashi, Chem. Phys. Chem. 6, 1537 (2005).Google Scholar
  11. 11.
    A. G. Rincon and C. Pulgarin, Catal. Today 101, 331 (2005).CrossRefGoogle Scholar
  12. 12.
    C. R. Esterkin, A. C. Negro, O. M. Alfano and A. E. Cassano, Am. Inst. Chem. Eng. J. 51, 2298 (2005).Google Scholar
  13. 13.
    R. Molinari, C. Grande, E. Drioli, L. Palmisano and M. Schiavello, Catal. Today 67, 273 (2001).CrossRefGoogle Scholar
  14. 14.
    H. Yoneyama, Crit. Rev. Solid State Mater. Sci. 18, 69 (1993).CrossRefGoogle Scholar
  15. 15.
    J. R. Harbour and M. L. Hair, J. Phys. Chem. 82, 1397 (1978).CrossRefGoogle Scholar
  16. 16.
    H. Noda, K. Oikawa, H. Ohya-Nishiguchi and H. Kamada, Bull. Chem. Soc. Jpn. 66, 3542 (1993).CrossRefGoogle Scholar
  17. 17.
    D. Dvoranová, V. Brezová, M. Mazúr and M. A. Malati, Appl. Catal. B: Environ. 37, 91 (2002).CrossRefGoogle Scholar
  18. 18.
    C. D. Jaeger and A. J. Bard, J. Phys. Chem. 83, 3146 (1979).CrossRefGoogle Scholar
  19. 19.
    J. R. Harbour, J. Tromp and M. L. Hair, Can. J. Chem. 63, 204 (1985).CrossRefGoogle Scholar
  20. 20.
    C. M. Miller and R. L. Valentine, Water Res. 33, 2805 (1999).CrossRefGoogle Scholar
  21. 21.
    V. Brezová, A. Staško and L. Lapčík, Jr., J. Photochem. Photobiol. A: Chem. 59, 115 (1991).CrossRefGoogle Scholar
  22. 22.
    V. Brezová and A. Staško, J. Catal. 147, 156 (1994).CrossRefGoogle Scholar
  23. 23.
    V. Brezová, A. Staško, S. Biskupič, A. Blažková and B. Havlínová, J. Phys. Chem. 98, 8977 (1994).CrossRefGoogle Scholar
  24. 24.
    R. Konaka, E. Kasahara, W. C. Dunlap, Y. Yamamoto, K. C. Chien and M. Inoue, Free Radic. Biol. Med. 27, 294 (1999).CrossRefGoogle Scholar
  25. 25.
    R. Konaka, E. Kasahara, W. C. Dunlap, Y. Yamamoto, K. C. Chien and M. Inoue, Redox Rep. 6, 319 (2001).CrossRefGoogle Scholar
  26. 26.
    R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. A. Rice-Evans, Free Radic. Biol. Med. 26, 1231 (1999).CrossRefGoogle Scholar
  27. 27.
    M. J. T. J. Arts, G. R. M. M. Haenen, H.-P. Voss and A. Bast, Food Chem. Toxicol. 42, 45 (2004).CrossRefGoogle Scholar
  28. 28.
    Catalogue of Light Sources 2000–2002, Philips, Eindhoven (2002). Also available online at: Scholar
  29. 29.
    A. S. W. Li, K. B. Cummings, H. P. Rothling, G. R. Buettner and C. F. Chignell, J. Magn. Reson. 79, 140 (1988). Also available online at: http://epr.niehs.nih.govGoogle Scholar
  30. 30.
    C. F. Chignell, A. G. Motten, R. H. Sik, C. E. Parker and K. Reszka, Photochem. Photobiol. 59, 5 (1994).CrossRefGoogle Scholar
  31. 31.
    D. De Bono, W. D. Yang and M. C. Symons, Free Radic. Res. 20, 327 (1994).CrossRefGoogle Scholar
  32. 32.
    P. Bilski, K. Reszka, M. Bilska and C. F. Chignell, J. Am. Chem. Soc. 118, 1330 (1996).CrossRefGoogle Scholar
  33. 33.
    J.-I. Ueda, K. Takeshita, S. Matsumoto, K. Yazaki, M. Kawaguchi and T. Ozawa, Photochem. Photobiol. 77, 165 (2003).CrossRefGoogle Scholar
  34. 34.
    J. J. Inbaraj, A. G. Motten and C. F. Chignell, Chem. Res. Toxicol. 16, 164 (2003).CrossRefGoogle Scholar
  35. 35.
    G. D. Mao, P. D. Thomas and M. J. Poznansky, Free Radic. Biol. Med. 16, 493 (1994).CrossRefGoogle Scholar
  36. 36.
    C. M. Jones and M. J. Burkitt, J. Chem. Soc. Perkin Trans. 2, 2044 (2002).Google Scholar
  37. 37.
    A. Lawrence, C. M. Jones, P. Wardman and M. J. Burkitt, J. Biol. Chem. 278, 29410 (2003).CrossRefGoogle Scholar
  38. 38.
    T. Ozawa, Y. Miura and J.-I. Ueda, Free Radic. Biol. Med. 20, 837 (1996).CrossRefGoogle Scholar
  39. 39.
    L. Eberson, M. P. Hartshorn and O. Persson, J. Chem. Soc. Perkin Trans. 2, 195 (1997).Google Scholar
  40. 40.
    M. Nishi, A. Hagi, H. Ide, A. Murakami and K. Makino, Biochem. Int. 27, 651 (1992).Google Scholar
  41. 41.
    M. M. Castellanos, D. Reyman, C. Sieiro and P. Calle, Ultrason. Sonochem. 8, 17 (2001).CrossRefGoogle Scholar
  42. 42.
    H. Zhang, J. Joseph, J. Vasquez-Vivar, H. Karoui, C. Nsanzumuhire, P. Martásek, P. Tordo and B. Kalyanaraman, FEBS Lett. 473, 58 (2000).CrossRefGoogle Scholar
  43. 43.
    B. Tuccio, R. Lauricella, C. Fréjaville, J.-C. Bouteiller and P. Tordo, J. Chem. Soc. Perkin Trans. 2, 295 (1995).Google Scholar
  44. 44.
    P. R. Marriott, M. J. Perkins and D. Griller, Can. J. Chem. 58, 803 (1980).CrossRefGoogle Scholar
  45. 45.
    P. Neta, S. Steenken, E. G. Janzen and R. V. Shetty, J. Phys. Chem. 84, 532 (1980).CrossRefGoogle Scholar
  46. 46.
    T. Herrling, J. Fuchs, J. Rehberg and N. Groth, Free Radic. Biol. Med. 35, 59 (2003).CrossRefGoogle Scholar
  47. 47.
    E. Damiani, R. Castagna and L. Greci, Free Radic. Biol. Med. 33, 128 (2002).CrossRefGoogle Scholar
  48. 48.
    O. I. Aruoma, Mutation Res. 523–524, 9 (2003).Google Scholar
  49. 49.
    C. A. Rice-Evans, N. J. Miller and G. Paganga, Free Radic. Biol. Med. 20, 933–956 (1996).CrossRefGoogle Scholar
  50. 50.
    E. N. Kadnikova and N. M. Kostić, J. Mol. Catal. B: Enzym. 18, 39 (2002).CrossRefGoogle Scholar
  51. 51.
    S. L. Scott, W. J. Chen, A. Bakac, and J. H. Espenson, J. Phys. Chem., 97, 6710, (1993).CrossRefGoogle Scholar
  52. 52.
    A. Landolt-Börnstein, H. Fischer (Ed.), in: Numerical Data and Functional Relationships in Science and Technology, New Series, vol. 17, Magnetic Properties of Free Radicals, Subvolume h, Organic Cation Radicals, Bi- and Polyradicals, p. 173. Springer, Berlin (1989).Google Scholar
  53. 53.
    N. H. Kim, M. S. Jeong, S. Y. Choi and J. H. Kang, Bull. Korean Chem. Soc. 25, 1889 (2004).CrossRefGoogle Scholar
  54. 54.
    N. D. Yordanov, Appl. Magn. Reson. 10, 339 (1996).CrossRefGoogle Scholar
  55. 55.
    I. Nakanishi, K. Fukuhara, T. Shimada, K. Ohkubo, Y. Iizuka, K. Inami, M. Mochizuki, S. Urano, S. Itoh, N. Miyata and S. Fukuzumi, J. Chem. Soc. Perkin Trans. 2, 1520 (2002).Google Scholar
  56. 56.
    M. Polovka, V. Brezová and A. Staško, Biophys. Chem. 106, 39 (2003).CrossRefGoogle Scholar
  57. 57.
    E. N. Hristea, M. Hillebrand, M. T. Caproiu, H. Caldararu, T. Constantinescu and A. T. Balaban, ARKIVOC Part 2, p. 123 (2002).Google Scholar
  58. 58.
    G. Dransfield, P. J. Guest, P. L. Lyth, D. J. McGarvey and T. G. Truscott, J. Photochem. Photobiol. B: Biol. 59, 147 (2000).CrossRefGoogle Scholar
  59. 59.
    R. Isono, T. Yoshimura and K. Esumi, J. Colloid Interface Sci. 288, 177 (2005).CrossRefGoogle Scholar
  60. 60.
    J. J. F. Coen, A. T. Smith, L. P. Candeias and J. Oakes, J. Chem. Soc. Perkin Trans. 2, 2125 (2001).Google Scholar
  61. 61.
    Q.-K. Zhuang, F. Scholz, and F. Pragst, Electrochem. Commun. 1, 406 (1999).CrossRefGoogle Scholar
  62. 62.
    P. Wardman, J. Phys. Chem. Ref. Data 18, 1637 (1989).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Department of Physical Chemistry, Faculty of Chemical and Food TechnologySlovak University of Technology in BratislavaBratislavaSlovak Republic

Personalised recommendations