Advertisement

Research on Chemical Intermediates

, Volume 33, Issue 1–2, pp 111–124 | Cite as

Synthesis and characterization of tin telluride inorganic/organic composite materials with nanoscale periodicity through solution-phase self-assembly: a new class of composite materials based on Zintl cluster self-oligomerization

  • Andrew E. Riley
  • Sarah H. Tolbert
Article

Abstract

In this work, we demonstrate the synthesis of semiconducting tin telluride inorganic/organic composite materials with nanoscale periodicity prepared using solution phase self-assembly. Oligomerization of anionic SnTe 4 4− clusters by halogen-mediated tellurium elimination in the presence of surfactant leads to the formation of a meosotructured composite. The composites initially forms as a mixture of mesophases, usually some combination of a layered phase and a phase based on cylindrical building blocks. Post synthetic treatment leads to a solid-state structural change which converts the composites to a single mesophase architecture with a hexagonal honeycomb (p6mm) morphology on the nanometer length scale. A by product of this reaction, however, is bulk tellurium. Changes in the electronic structure of the materials during synthesis and solid-state restructuring are probed using electron spin resonance (ESR) spectroscopy.

Keywords

Composite materials semiconducting halogen-mediated tellurium elimination ESR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartulli and J. S. Beck, Nature 359, 710 (1992).CrossRefGoogle Scholar
  2. 2.
    J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. T. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc. 114, 10834 (1992).CrossRefGoogle Scholar
  3. 3.
    Q. Huo, D. I. Margolese, U. Clesa, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schuth and G. D. Stucky, Nature 368, 317 (1994).CrossRefGoogle Scholar
  4. 4.
    A. Monnier, F. Schuth, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. D. M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, B. F. Chmelka, Science 261, 1299 (1993).CrossRefGoogle Scholar
  5. 5.
    J. Wu, A. F. Gross and S. H. Tolbert, J. Phys. Chem. B 103, 2374 (1999).CrossRefGoogle Scholar
  6. 6.
    D. M. Antonelli and J. Y. Ying, Angew. Chem. Int. Edn. Engl. 35, 426 (1996).CrossRefGoogle Scholar
  7. 7.
    S. A. Bagshaw and T. J. Pinnavaia, Angew: Chem. Int. Edn. Engl. 35, 1102 (1996).CrossRefGoogle Scholar
  8. 8.
    Z. R. Tian, W. Tong, J.-Y. Wang, N.-G. Duan, V. K. Krishnan and S. L. Suib. Science 276, 926 (1997).CrossRefGoogle Scholar
  9. 9.
    U. Ciesla, S. Schacht, G. D. Stucky, K. K. Unger and F. Schuth, Angew. Chem. Int. Edn. Engl. 35, 541 (1996).CrossRefGoogle Scholar
  10. 10.
    P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka and G. D. Stucky, Nature 396, 152 (1998).CrossRefGoogle Scholar
  11. 11.
    M. S. Wong, D. M. Antonelli and J. Y. Ying, Nano Mater. 9, 165 (1997).CrossRefGoogle Scholar
  12. 12.
    M. S. Wong and J. Y. Ying, Chem. Mater. 10, 2067 (1998).CrossRefGoogle Scholar
  13. 13.
    T. Sun, J. Y. Ying, Angew. Chem. Int. Edn. 37, 664 (1998).CrossRefGoogle Scholar
  14. 14.
    P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Kramer, G. D. Stucky and B. F. Chmelka, Chem. Mater. 14, 3284 (2002).CrossRefGoogle Scholar
  15. 15.
    G. J. de A. A. Soller-Illia, A. Louis and C. Sanchez, Chem. Mater. 14, 750 (2002).CrossRefGoogle Scholar
  16. 16.
    L. Pidol, D. Grosso, G. J. de A. A. Soller-Illia, E. L. Crepaldi, C. Sanchez, P. A. Albouy, H. Amenitsch and P. Euzen, J. Mater. Chem. 12, 557 (2002).CrossRefGoogle Scholar
  17. 17.
    Z. Wang, A. Mitra, H. Wang, L. Huang and Y. Yan, Adv. Mater. 13, 1463 (2001).CrossRefGoogle Scholar
  18. 18.
    T. Nassivera, A. G. Eklund and C. C. Landry, J. Chromatogr. 973, 97 (2002).CrossRefGoogle Scholar
  19. 19.
    A. Sayari, Chem. Mater. 8, 1840 (1996).CrossRefGoogle Scholar
  20. 20.
    B. J. Scott, M. H. Bartl, G. Wirnsberger and G. D. Stucky, J. Phys. Chem. 107, 5499 (2003).Google Scholar
  21. 21.
    T.-Q. Nguyen, J. Wu, V. Doan, B. J. Schwartz and S. H. Tolbert, Science 288, 652 (2000).CrossRefGoogle Scholar
  22. 22.
    A. E. Riley and S. H. Tolbert, J. Am. Chem. Soc. 125, 4551 (2003).CrossRefGoogle Scholar
  23. 23.
    K. K. Rangan, P. N. Trikalitis, C. Canlas, T. Bakas, D. P. Weliky and M. G. Kanatzidis, Nano Lett. 2, 513 (2002).CrossRefGoogle Scholar
  24. 24.
    P. N. Trikalitis, K. K. Rangan and M. G. Kanatzidis, J. Am. Chem. Soc. 124, 2604 (2002).CrossRefGoogle Scholar
  25. 25.
    P. N. Trikalitis, K. K. Rangan, T. Bakas and M. G. Kanatzidis, Nature 410, 671 (2001).CrossRefGoogle Scholar
  26. 26.
    K. K. Rangan, P. N. Trikalitis and M. G. Kanatzidis, J. Am. Chem. Soc. 122, 10230 (2000).CrossRefGoogle Scholar
  27. 27.
    M. Wachhold, K. K. Rangan, M. Lei, M. F. Thorpe, S. J. L. Billinge, V. Petkov, J. Heising and M. G. Kanatzidis, Solid State Chem. 152, 21 (2000).CrossRefGoogle Scholar
  28. 28.
    M. J. MacLachlan, N. Coombs and G. A. Ozin, Nature 397, 681 (1999).CrossRefGoogle Scholar
  29. 29.
    K. K. Rangan, S. J. L. Billinge, V. Petkov, J. Heising and M. G. Kanatzidis, Chem. Mater. 11, 2629 (1999).CrossRefGoogle Scholar
  30. 30.
    P. N. Trikalitis, K. K. Rangan, T. Bakas and M. G. Kanatzidis, J. Am. Chem. Soc. 124, 12255 (2002).CrossRefGoogle Scholar
  31. 31.
    B. Krebs, Angew. Chem. Int. Edn. Engl. 22, 113 (1983).CrossRefGoogle Scholar
  32. 32.
    J. C. Hauffman, J. P. Haushalter, A. M. Umarji, G. K. Shenoy and R. C. Haushalter, Inorg. Chem. 23, 2312 (1984).CrossRefGoogle Scholar
  33. 33.
    J. Li, Y. Y. Liszewski, L. A. MacAdams, F. Chen and D. M. S. Prosperio, Chem. Mater. 8, 598 (1996).CrossRefGoogle Scholar
  34. 34.
    A. M. Pirani, H. P. A. Mercier, D. A. Dixon, H. Bornann and G. J. Schrobilgen, Inorg. Chem. 40, 4823 (2001).CrossRefGoogle Scholar
  35. 35.
    F. M. Menger and C. A. Littau, J. Am. Chem. Soc. 115, 10083 (1993).CrossRefGoogle Scholar
  36. 36.
    A. Weiss, in: Organic Geochemistry, G., Eglinton (Ed.), p. 737. Springer, Berlin (1969).Google Scholar
  37. 37.
    T. Story, C. H. W. Swuste, P. J. T. Eggenkamp, H. J. M. Swagten and W. J. M. de Jonge, Phys. Rev. Lett. 77, 2802 (1996).CrossRefGoogle Scholar
  38. 38.
    S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby, J. C. Hanson and A. Monnier, Chem. Mater. 13, 2247 (2001).CrossRefGoogle Scholar
  39. 39.
    C. C. Landry, S. H. Tolbert, K. W. Gallis, A. Monnier, G. D. Stucky, P. Norby and J. C. Hanson, Chem. Mater. 13, 1600 (2001).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations