Research on Chemical Intermediates

, Volume 33, Issue 1–2, pp 125–142 | Cite as

Ionic strength and solvent control over the physical structure, electronic properties and superquenching of conjugated polyelectrolytes

  • Alex D. Smith
  • Clifton Kwang-Fu Shen
  • Sean T. Roberts
  • Roger Helgeson
  • Benjamin J. Schwartz


In this paper, we investigate the photophysical properties of the conjugated poly electrolyte poly(2-methoxy-5-propyloxy sulfonate phenylene vinylene) (MPS-PPV), dissolved in both water and DMSO as a function of the solution ionic strength. Dynamic light scattering indicates that MPS-PPV chains exist in a highly agglomerated conformation in both solvents, and that the size of the agglomerates depends on both the ionic strength and the charge of the counter-ion. Even though the degree of agglomeration is similar in the two solvents, we find that the fluorescence quantum yield of MPS-PPV in DMSO is nearly 100-times greater than that in water. Moreover, intensity-dependent femtosecond pump-probe experiments show that there is a significant degree of exciton-exciton annihilation in water but not in DMSO, suggesting that the MPS-PPV chromophores interact to form interchain electronic species that quench the emission in water. Given that the emission quenching properties depend sensitively on the chain conformation and degree of chromophore contact, we also explore the superquenching may be either enhanced or diminished in either of the solvents via addition of simple salts, and we present a molecular picture to rationalize how the conformational properties of conjugated polyelectrolytes can be tuned to enhance their emissive behavior for sensing applications.


Poly(2-methoxy-5-propyloxy sulfonate phenylene vinylene) photophysical properties superquenching ionic strength solvent control fluorescence femtosecond pump-probe experiments 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J.-L. Brédas, M. Löglund and W. R. Salaneck, Nature 397, 121 (1999).CrossRefGoogle Scholar
  2. 2.
    A. Kraft, A. C. Gramisdale and A. B. Holmes, Angew. Chem. Int. Edn. Engl. 37, 402 (1998).CrossRefGoogle Scholar
  3. 3.
    A. J. Heeger, J. Phys. Chem. B 105, 8475 (2001).CrossRefGoogle Scholar
  4. 4.
    G. Gustafsson, Y. Cao, G. M. Treacy, F. Flavetter, N. Colinari and A. J. Heeger, Nature 357, 477 (1992).CrossRefGoogle Scholar
  5. 5.
    C. J. Brabec, N. S. Sariciftci and J. C. Hummelen, Adv. Funct. Mater. 11, 15 (2001).CrossRefGoogle Scholar
  6. 6.
    J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature 347, 539 (1990).CrossRefGoogle Scholar
  7. 7.
    T.-Q. Nguyen, I. B. Martini, J. Liu and B. J. Schwartz, J. Phys. Chem. B 104, 237 (2000).CrossRefGoogle Scholar
  8. 8.
    T.-Q. Nguyen, V. Doan and B. J. Schwartz, J. Chem. Phys. 110, 4068 (1999).CrossRefGoogle Scholar
  9. 9.
    T.-Q. Nguyen, R. C. Kwong, M. E. Thompson and B. J. Schwartz, Appl. Phys. Lett. 76, 2454 (2000).CrossRefGoogle Scholar
  10. 10.
    T.-Q. Nguyen, J. Wu, V. Doan, B. J. Schwartz and S. H. Tolbert, Science 288, 652 (2000).CrossRefGoogle Scholar
  11. 11.
    T.-Q. Nguyen, R. Y. Yee and B. J. Schwartz, J. Photochem. Photobiol. A 144, 21 (2001).CrossRefGoogle Scholar
  12. 12.
    T.-Q. Nguyen and B. J. Schwartz, J. Chem. Phys. 116, 8198 (2002).CrossRefGoogle Scholar
  13. 13.
    R. D. Schaller, J. C. Johnson, L. H. Haber, R. J. Saykally, J. Vieceli, I. Benjamin, T.-Q. Nguyen and B. J. Schwartz, J. Phys. Chem. B 106, 9496 (2002).CrossRefGoogle Scholar
  14. 14.
    R. Jakubiak, C. J. Collison, C. W. Wai, L. J. Rothberg and B. R. Hsieh, J. Phys. Chem. A 103, 2394 (1999).CrossRefGoogle Scholar
  15. 15.
    M. Yan, L. J. Rothberg, F. Papadimitrakopoulos, M. E. Galvin and T. M. Miller, Phys. Rev. Lett. 73, 744 (1994).CrossRefGoogle Scholar
  16. 16.
    M. Yan, L. J. Rothberg, E. W. Kwock and T. M. Miller, Phys. Rev. Lett. 75, 1992 (1995).CrossRefGoogle Scholar
  17. 17.
    T. G. Bjorklund, S.-H. Lim and C. J. Bardeen, J. Phys. Chem. B 105, 11970 (2001).CrossRefGoogle Scholar
  18. 18.
    S.-H. Lim, T. G. Bjorklund and C. J. Bardeen, J. Chem. Phys. 118, 4297 (2003).CrossRefGoogle Scholar
  19. 19.
    B. J. Schwartz, Annu. Rev. Phys. Chem. 54, 141 (2003).CrossRefGoogle Scholar
  20. 20.
    S. A. Jenekhe and J. A. Osaheni, Science 265, 765 (1994).CrossRefGoogle Scholar
  21. 21.
    I. D. W. Samuel, G. Rumbles, C. J. Collison, S. C. Moratti and A. B. Holmes, Chem. Phys. 227, 75 (1998).CrossRefGoogle Scholar
  22. 22.
    J. W. Blatchford, S. W. Jessen, L.-B. Lin, T. L. Gustafson, D.-K. Fu, H.-L. Wang, T. M. Swager, A. G. MacDiaramid and A. J. Epstein, Phys. Rev. B 54, 9180 (1996).CrossRefGoogle Scholar
  23. 23.
    R. Chang, J. H. Hsu, W. S. Fann, J. Yu, S. H. Lin, Y. Z. Lee and S. A. Chen, Chem. Phys. Lett. 317, 153 (2000).CrossRefGoogle Scholar
  24. 24.
    F. Oosawa, Polyelectrolytes Marcel Dekker, New York, NY (1971).Google Scholar
  25. 25.
    Y. Zhang, J. F. Douglas, B. D. Ermi and E. J. Amis, J. Chem. Phys. 114, 3299 (2001).CrossRefGoogle Scholar
  26. 26.
    M. Sedlák, Langmuir 15, 4045 (1999).CrossRefGoogle Scholar
  27. 27.
    E. T. Hanson, R. Borsali and R. Pecora, Marcomolecules 34, 2208 (2001).CrossRefGoogle Scholar
  28. 28.
    R. Borsali, H. Nguyen and R. Pecora, Macromolecules 31, 1548 (1998).CrossRefGoogle Scholar
  29. 29.
    S. Shi and F. Wudl, Macromolecules 21, 19 (1990).Google Scholar
  30. 30.
    B. S. Gaylord, S. Wang, A. J. Heeger and G. C. Bazan, J. Am. Chem. Soc. 123, 6417 (2001).CrossRefGoogle Scholar
  31. 31.
    M. R. Pinto and K. S. Schanze, Synthesis 9, 1293 (2002).CrossRefGoogle Scholar
  32. 32.
    C. Tan, M. R. Pinto and K. S. Schanze, Chem. Commun., 446 (2002).Google Scholar
  33. 33.
    M. R. Pinto, B. M. Kristal and K. S. Schanze, Langmuir 19, 6523 (2003).CrossRefGoogle Scholar
  34. 34.
    J.-S. Yang and T. M. Swager, J. Am. Chem. Soc. 120, 5231 (1998).Google Scholar
  35. 35.
    J.-S. Yang and T. M. Swager, J. Am. Chem. Soc. 120, 11864 (1998).CrossRefGoogle Scholar
  36. 36.
    D. T. McQuade, A. E. Pullen and T. M. Swager, Chem. Rev. 100, 2537 (2000).CrossRefGoogle Scholar
  37. 37.
    L. Chen, D. W. McBranch, H.-L. Wang, R. Helgeson, F. Wudl and D. G. Whitten, Proc. Natl. Acad. Sci. USA 96, 12287 (1999).CrossRefGoogle Scholar
  38. 38.
    L. Chen, S. Xu, D. McBranch and D. Whitten, J. Am. Chem. Soc. 122, 9302 (2000).CrossRefGoogle Scholar
  39. 39.
    C. Fan, K. W. Plaxco and A. J. Heeger, J. Am. Chem. Soc. 124, 5642 (2002).CrossRefGoogle Scholar
  40. 40.
    D. Wang, J. Wang, D. Moses, G. Bazan, A. J. Heeger, J.-H. Park and Y.-W. Park, Synth. Met. 119, 587 (2001).CrossRefGoogle Scholar
  41. 41.
    N. DiCesare, M. R. Pinto, K. S. Schanze and J. R. Lakowicz, Langmuir 18, 7785 (2002).CrossRefGoogle Scholar
  42. 42.
    D. Wang, J. Lal, D. Moses, G. Bazan and A. J. Heeger, Chem. Phys. Lett. 348, 411 (2001).CrossRefGoogle Scholar
  43. 43.
    L. Chen, D. MoBranch, R. Wang and D. Whitten, Chem. Phys. Lett. 330, 27 (2000).CrossRefGoogle Scholar
  44. 44.
    J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd edn. Kluwer Academic/Plenum, New York, NY (1999).Google Scholar
  45. 45.
    I. B. Martini, A. D. Smith and B. J. Schwartz, Phys. Rev. B 69, 35205 (2004).CrossRefGoogle Scholar
  46. 46.
    C. L. Gettinger, A. J. Heeger, J. M. Drake and D. J. Pine, J. Chem. Phys. 101, 1673 (1994).CrossRefGoogle Scholar
  47. 47.
    R. G. Kepler, V. S. Valencia, S. J. Jabos and J. J. McNamara, Synth. Met. 78, 227 (1996).CrossRefGoogle Scholar
  48. 48.
    B. Kraabel, V. I. Klimov, R. Kohlman, S. Xu, H.-L. Wang and D. W. McBranch, Phys. Rev. B 61, 8501 (2000).CrossRefGoogle Scholar
  49. 49.
    I. Borukhov, R. F. Bruinsma, W. M. Gelbart and A. J. Liu, Phys. Rev. Lett. 86, 2182 (2001).CrossRefGoogle Scholar
  50. 50.
    I. Borukhov, K.-C. Lee, R. F. Bruinsma, W. M. Gelbart, A. J. Liu and M. J. Stevens, J. Chem. Phys. 117, 462 (2002).CrossRefGoogle Scholar
  51. 51.
    J. Wang, D. Wang, D. Moses and A. J. Heeger, J. Appl. Polym. Sci. 82, 2553 (2001).CrossRefGoogle Scholar
  52. 52.
    N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Science 258, 1474 (1992).CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Alex D. Smith
    • 1
  • Clifton Kwang-Fu Shen
    • 1
  • Sean T. Roberts
    • 1
  • Roger Helgeson
    • 1
  • Benjamin J. Schwartz
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations